Skip to main content
Erschienen in: Current Osteoporosis Reports 2/2018

05.03.2018 | Genetics (M Johnson and S Ralston, Section Editors)

Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry

verfasst von: David W. Rowe, Douglas J. Adams, Seung-Hyun Hong, Caibin Zhang, Dong-Guk Shin, C. Renata Rydzik, Li Chen, Zhihua Wu, Gaven Garland, Dana A. Godfrey, John P. Sundberg, Cheryl Ackert-Bicknell

Erschienen in: Current Osteoporosis Reports | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

The international mouse phenotyping consortium (IMPC) is producing defined gene knockout mouse lines. Here, a phenotyping program is presented that is based on micro-computed tomography (μCT) assessment of distal femur and vertebra. Lines with significant variation undergo a computer-based bone histomorphometric analysis.

Recent findings

Of the 220 lines examined to date, approximately 15% have a significant variation (high or low) by μCT, most of which are not identified by the IMPC screen. Significant dimorphism between the sexes and bone compartments adds to the complexity of the skeletal findings. The μCT information that is posted at www.​bonebase.​org can group KOMP lines with similar morphological features. The histological data is presented in a graphic form that associates the cellular features with a specific anatomic group.

Summary

The web portal presents a bone-centric view appropriate for the skeletal biologist/clinician to organize and understand the large number of genes that can influence skeletal health. Cataloging the relative severity of each variant is the first step towards compiling the dataset necessary to appreciate the full polygenic basis of degenerative bone disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Jacobs, J.J., et al., Beyond the decade: strategic priorities to reduce the burden of musculoskeletal disease. J Bone Joint Surg Am, 2013. 95(17): p. e1251–6. 3748998. Jacobs, J.J., et al., Beyond the decade: strategic priorities to reduce the burden of musculoskeletal disease. J Bone Joint Surg Am, 2013. 95(17): p. e1251–6. 3748998.
3.
Zurück zum Zitat • Alonso N, Ralston SH. Unveiling the mysteries of the genetics of osteoporosis. J Endocrinol invest. 2014;37(10):925–34. Until reference 4 is published, this is the most recent overview of the clinical linkage studies that identify gentic loci that impact skeletal variation. The goal is to associate the GWAS studies in humans to the KOMP data in mice. CrossRefPubMed • Alonso N, Ralston SH. Unveiling the mysteries of the genetics of osteoporosis. J Endocrinol invest. 2014;37(10):925–34. Until reference 4 is published, this is the most recent overview of the clinical linkage studies that identify gentic loci that impact skeletal variation. The goal is to associate the GWAS studies in humans to the KOMP data in mice. CrossRefPubMed
4.
Zurück zum Zitat Kemp J, M. J, Gregson C, Tobias J, Forgetta V, Medina-Gomez MC, et al. Genome-wide association study of bone mineral density in the UK Biobank study identifies over 376 loci associated with osteoporosis. Nat Genet. 2017. in press;49:1468–75.CrossRefPubMedPubMedCentral Kemp J, M. J, Gregson C, Tobias J, Forgetta V, Medina-Gomez MC, et al. Genome-wide association study of bone mineral density in the UK Biobank study identifies over 376 loci associated with osteoporosis. Nat Genet. 2017. in press;49:1468–75.CrossRefPubMedPubMedCentral
5.
6.
Zurück zum Zitat Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869–92.CrossRefPubMed Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869–92.CrossRefPubMed
7.
Zurück zum Zitat Qaseem A, Forciea MA, McLean RM, Denberg TD, for the Clinical Guidelines Committee of the American College of Physicians. Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(11):818–39.CrossRefPubMed Qaseem A, Forciea MA, McLean RM, Denberg TD, for the Clinical Guidelines Committee of the American College of Physicians. Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166(11):818–39.CrossRefPubMed
8.
Zurück zum Zitat Metcalf LM, Aspray TJ, McCloskey EV. The effects of parathyroid hormone peptides on the peripheral skeleton of postmenopausal women. A systematic review. Bone. 2017;99:39–46.CrossRefPubMed Metcalf LM, Aspray TJ, McCloskey EV. The effects of parathyroid hormone peptides on the peripheral skeleton of postmenopausal women. A systematic review. Bone. 2017;99:39–46.CrossRefPubMed
9.
Zurück zum Zitat Tashjian AH Jr, Gagel RF. Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res. 2006;21(3):354–65.CrossRefPubMed Tashjian AH Jr, Gagel RF. Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res. 2006;21(3):354–65.CrossRefPubMed
10.
Zurück zum Zitat Lopez-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol. 2016;12(4):389–98.CrossRefPubMed Lopez-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol. 2016;12(4):389–98.CrossRefPubMed
11.
Zurück zum Zitat Rivadeneira F, Makitie O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab. 2016;27(5):262–81.CrossRefPubMed Rivadeneira F, Makitie O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab. 2016;27(5):262–81.CrossRefPubMed
12.
Zurück zum Zitat Brommage R, et al. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res. 2014;(2):14034–40. 4472125 Brommage R, et al. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res. 2014;(2):14034–40. 4472125
13.
Zurück zum Zitat Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28(7):749–55.CrossRefPubMed Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28(7):749–55.CrossRefPubMed
14.
Zurück zum Zitat White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell. 2013;154(2):452–64.CrossRefPubMedPubMedCentral White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell. 2013;154(2):452–64.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Brommage R. Genetic approaches to identifying novel osteoporosis drug targets. J Cell Biochem. 2015;116(10):2139–45.CrossRefPubMed Brommage R. Genetic approaches to identifying novel osteoporosis drug targets. J Cell Biochem. 2015;116(10):2139–45.CrossRefPubMed
16.
Zurück zum Zitat • Freudenthal B, et al. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J Endocrinol. 2016;231(1):R31–46. This is the most recent overview of the various IMPC-relatd bone phenotyping programs with particular emphasis on the mechanical and structural aspects of bone. CrossRefPubMedPubMedCentral • Freudenthal B, et al. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J Endocrinol. 2016;231(1):R31–46. This is the most recent overview of the various IMPC-relatd bone phenotyping programs with particular emphasis on the mechanical and structural aspects of bone. CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat • Meehan TF, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49(8):1231–8. This is the most recent update of the IMPC screening activity. There is no mention of skeletal disorders in the screen, which emphasizes the need for a bone-focused component to this international project. CrossRefPubMedPubMedCentral • Meehan TF, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49(8):1231–8. This is the most recent update of the IMPC screening activity. There is no mention of skeletal disorders in the screen, which emphasizes the need for a bone-focused component to this international project. CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Bouxsein ML, Uchiyama T, Rosen CJ, Shultz KL, Donahue LR, Turner CH, et al. Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res. 2004;19(4):587–99.CrossRefPubMed Bouxsein ML, Uchiyama T, Rosen CJ, Shultz KL, Donahue LR, Turner CH, et al. Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res. 2004;19(4):587–99.CrossRefPubMed
20.
Zurück zum Zitat Hong SH, et al. Computer-automated static, dynamic and cellular bone histomorphometry. J Tissue Sci Eng. 2012;(Suppl 1):004. Hong SH, et al. Computer-automated static, dynamic and cellular bone histomorphometry. J Tissue Sci Eng. 2012;(Suppl 1):004.
21.
Zurück zum Zitat Dyment NA, Jiang X, Chen L, Hong SH, Adams DJ, Ackert-Bicknell C, et al. High-throughput, multi-image cryohistology of mineralized tissues. J Vis Exp. 2016;(115) Dyment NA, Jiang X, Chen L, Hong SH, Adams DJ, Ackert-Bicknell C, et al. High-throughput, multi-image cryohistology of mineralized tissues. J Vis Exp. 2016;(115)
22.
Zurück zum Zitat Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, et al. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone. 2004;35(1):74–82.CrossRefPubMed Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, et al. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone. 2004;35(1):74–82.CrossRefPubMed
23.
Zurück zum Zitat Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, Feyen JHM, et al. Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem. 2005;280(26):24618–26.CrossRefPubMed Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, Feyen JHM, et al. Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem. 2005;280(26):24618–26.CrossRefPubMed
24.
Zurück zum Zitat Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res. 1996;11(2):150–9.CrossRefPubMed Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res. 1996;11(2):150–9.CrossRefPubMed
25.
Zurück zum Zitat Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentral Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentral
26.
Zurück zum Zitat Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc. 1922;85:87.CrossRef Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc. 1922;85:87.CrossRef
27.
Zurück zum Zitat Kurbatova N, Mason JC, Morgan H, Meehan TF, Karp NA. PhenStat: a tool kit for standardized analysis of high throughput phenotypic data. PLoS One. 2015;10(7):e0131274.CrossRefPubMedPubMedCentral Kurbatova N, Mason JC, Morgan H, Meehan TF, Karp NA. PhenStat: a tool kit for standardized analysis of high throughput phenotypic data. PLoS One. 2015;10(7):e0131274.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15(9):1066–71.CrossRefPubMedPubMedCentral Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15(9):1066–71.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Sims NA, Quinn JM. Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep. 2014;3:527.PubMedPubMedCentral Sims NA, Quinn JM. Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep. 2014;3:527.PubMedPubMedCentral
30.
Zurück zum Zitat Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96(14):8156–60.CrossRefPubMedPubMedCentral Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96(14):8156–60.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zarjou A, Jeney V, Arosio P, Poli M, Zavaczki E, Balla G, et al. Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res. 2010;25(1):164–72.CrossRefPubMed Zarjou A, Jeney V, Arosio P, Poli M, Zavaczki E, Balla G, et al. Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res. 2010;25(1):164–72.CrossRefPubMed
32.
Zurück zum Zitat Wiren KM, Toombs AR, Zhang XW. Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol. 2004;32(1):209–26.CrossRefPubMed Wiren KM, Toombs AR, Zhang XW. Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. J Mol Endocrinol. 2004;32(1):209–26.CrossRefPubMed
33.
Zurück zum Zitat Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem. 2012;287(19):15718–27.CrossRefPubMedPubMedCentral Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem. 2012;287(19):15718–27.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Abdelmagid SM, Belcher JY, Moussa FM, Lababidi SL, Sondag GR, Novak KM, et al. Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am J Pathol. 2014;184(3):697–713.CrossRefPubMedPubMedCentral Abdelmagid SM, Belcher JY, Moussa FM, Lababidi SL, Sondag GR, Novak KM, et al. Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am J Pathol. 2014;184(3):697–713.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Abubaker J, Tiss A, Abu-Farha M, al-Ghimlas F, al-Khairi I, Baturcam E, et al. DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS One. 2013;8(7):e69217.CrossRefPubMedPubMedCentral Abubaker J, Tiss A, Abu-Farha M, al-Ghimlas F, al-Khairi I, Baturcam E, et al. DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS One. 2013;8(7):e69217.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Pantel J, Legendre M, Nivot S, Morisset S, Vie-Luton MP, le Bouc Y, et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J Clin Endocrinol Metab. 2009;94(11):4334–41.CrossRefPubMed Pantel J, Legendre M, Nivot S, Morisset S, Vie-Luton MP, le Bouc Y, et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J Clin Endocrinol Metab. 2009;94(11):4334–41.CrossRefPubMed
37.
Zurück zum Zitat Chen Z, Su L, Xu Q, Katz J, Michalek SM, Fan M, et al. IL-1R/TLR2 through MyD88 divergently modulates Osteoclastogenesis through regulation of nuclear factor of activated T cells c1 (NFATc1) and B lymphocyte-induced maturation protein-1 (Blimp1). J Biol Chem. 2015;290(50):30163–74.CrossRefPubMedPubMedCentral Chen Z, Su L, Xu Q, Katz J, Michalek SM, Fan M, et al. IL-1R/TLR2 through MyD88 divergently modulates Osteoclastogenesis through regulation of nuclear factor of activated T cells c1 (NFATc1) and B lymphocyte-induced maturation protein-1 (Blimp1). J Biol Chem. 2015;290(50):30163–74.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis. Endocr Rev. 2011;32(1):31–63.CrossRefPubMed Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis. Endocr Rev. 2011;32(1):31–63.CrossRefPubMed
39.
Zurück zum Zitat Witwicka H, Hwang SY, Reyes-Gutierrez P, Jia H, Odgren PE, Donahue LR, et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, rescue of cell fusion, and transmembrane topology. PLoS One. 2015;10(6):e0128275.CrossRefPubMedPubMedCentral Witwicka H, Hwang SY, Reyes-Gutierrez P, Jia H, Odgren PE, Donahue LR, et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, rescue of cell fusion, and transmembrane topology. PLoS One. 2015;10(6):e0128275.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, et al. Targeted sequencing of the Paget’s disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget’s disease of bone. Hum Mol Genet. 2015;24(11):3286–95.CrossRefPubMedPubMedCentral Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, et al. Targeted sequencing of the Paget’s disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget’s disease of bone. Hum Mol Genet. 2015;24(11):3286–95.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DHM, Warrington NM, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6):e1004423.CrossRefPubMedPubMedCentral Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DHM, Warrington NM, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6):e1004423.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Albagha OM, et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat Genet. 2011;43(7):685–9.CrossRefPubMed Albagha OM, et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat Genet. 2011;43(7):685–9.CrossRefPubMed
43.
Zurück zum Zitat • Adams DJ, Rowe DW, Ackert-Bicknell CL. Genetics of aging bone. Mamm Genome. 2016;27(7–8):367–80. Besides providing the bone phenotypic changes with aging, the paper provides a concise comparison of the BMD measurement by DXA and cortical bone measurement by μCT. CrossRefPubMedPubMedCentral • Adams DJ, Rowe DW, Ackert-Bicknell CL. Genetics of aging bone. Mamm Genome. 2016;27(7–8):367–80. Besides providing the bone phenotypic changes with aging, the paper provides a concise comparison of the BMD measurement by DXA and cortical bone measurement by μCT. CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol. 2015;159(2):163–9.CrossRefPubMedPubMedCentral Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol. 2015;159(2):163–9.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Yan J, Charles JF. Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep. 2017;15:376–84.CrossRefPubMed Yan J, Charles JF. Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep. 2017;15:376–84.CrossRefPubMed
46.
Zurück zum Zitat Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–53.CrossRefPubMed Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–53.CrossRefPubMed
47.
Zurück zum Zitat Bassett JH, et al. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet. 2012;8(8):e1002858.CrossRefPubMedPubMedCentral Bassett JH, et al. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet. 2012;8(8):e1002858.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Migliaccio S, Greco EA, Wannenes F, Donini LM, Lenzi A. Adipose, bone and muscle tissues as new endocrine organs: role of reciprocal regulation for osteoporosis and obesity development. Horm Mol Biol Clin Investig. 2014;17(1):39–51.PubMed Migliaccio S, Greco EA, Wannenes F, Donini LM, Lenzi A. Adipose, bone and muscle tissues as new endocrine organs: role of reciprocal regulation for osteoporosis and obesity development. Horm Mol Biol Clin Investig. 2014;17(1):39–51.PubMed
49.
Zurück zum Zitat Urano T, Inoue S. Recent genetic discoveries in osteoporosis, sarcopenia and obesity. Endocr J. 2015;62(6):475–84.CrossRefPubMed Urano T, Inoue S. Recent genetic discoveries in osteoporosis, sarcopenia and obesity. Endocr J. 2015;62(6):475–84.CrossRefPubMed
50.
Zurück zum Zitat Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. 2017;546(7656):107–12.CrossRefPubMed Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. 2017;546(7656):107–12.CrossRefPubMed
51.
Zurück zum Zitat Morin S, Leslie WD, Manitoba Bone Density P. High bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267–71.CrossRefPubMed Morin S, Leslie WD, Manitoba Bone Density P. High bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267–71.CrossRefPubMed
52.
Zurück zum Zitat Young AC, et al. The identification of hereditary and environmental determinants of frailty in a cohort of UK twins. Twin Res Hum Genet. 2016;19(6):600–9.CrossRefPubMed Young AC, et al. The identification of hereditary and environmental determinants of frailty in a cohort of UK twins. Twin Res Hum Genet. 2016;19(6):600–9.CrossRefPubMed
53.
Zurück zum Zitat Erusalimsky JD, Grillari J, Grune T, Jansen-Duerr P, Lippi G, Sinclair AJ, et al. In search of ‘omics’-based biomarkers to predict risk of frailty and its consequences in older individuals: the FRAILOMIC initiative. Gerontology. 2016;62(2):182–90.CrossRefPubMed Erusalimsky JD, Grillari J, Grune T, Jansen-Duerr P, Lippi G, Sinclair AJ, et al. In search of ‘omics’-based biomarkers to predict risk of frailty and its consequences in older individuals: the FRAILOMIC initiative. Gerontology. 2016;62(2):182–90.CrossRefPubMed
54.
Zurück zum Zitat Taicher GZ, Tinsley FC, Reiderman A, Heiman ML. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem. 2003;377(6):990–1002.CrossRefPubMed Taicher GZ, Tinsley FC, Reiderman A, Heiman ML. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem. 2003;377(6):990–1002.CrossRefPubMed
55.
Zurück zum Zitat Ravn P, Fledelius C, Rosenquist C, Overgaard K, Christiansen C. High bone turnover is associated with low bone mass in both pre- and postmenopausal women. Bone. 1996;19(3):291–8.CrossRefPubMed Ravn P, Fledelius C, Rosenquist C, Overgaard K, Christiansen C. High bone turnover is associated with low bone mass in both pre- and postmenopausal women. Bone. 1996;19(3):291–8.CrossRefPubMed
56.
Zurück zum Zitat Ng AH, Willett TL, Alman BA, Grynpas MD. Development, validation and characterization of a novel mouse model of adynamic bone disease (ABD). Bone. 2014;68:57–66.CrossRefPubMed Ng AH, Willett TL, Alman BA, Grynpas MD. Development, validation and characterization of a novel mouse model of adynamic bone disease (ABD). Bone. 2014;68:57–66.CrossRefPubMed
57.
Zurück zum Zitat Massy Z, Drueke T. Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease. J Nephrol. 2017;30:629–34.CrossRefPubMed Massy Z, Drueke T. Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease. J Nephrol. 2017;30:629–34.CrossRefPubMed
58.
Zurück zum Zitat Sims NA, Martin TJ. Coupling signals between the osteoclast and osteoblast: how are messages transmitted between these temporary visitors to the bone surface? Front Endocrinol (Lausanne). 2015;6:41. Sims NA, Martin TJ. Coupling signals between the osteoclast and osteoblast: how are messages transmitted between these temporary visitors to the bone surface? Front Endocrinol (Lausanne). 2015;6:41.
59.
Zurück zum Zitat Delaisse JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014;3:561.CrossRefPubMedPubMedCentral Delaisse JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014;3:561.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Andersen TL, Hauge EM, Rolighed L, Bollerslev J, Kjærsgaard-Andersen P, Delaisse JM. Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis. Am J Pathol. 2014;184(4):1142–51.CrossRefPubMed Andersen TL, Hauge EM, Rolighed L, Bollerslev J, Kjærsgaard-Andersen P, Delaisse JM. Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis. Am J Pathol. 2014;184(4):1142–51.CrossRefPubMed
61.
Zurück zum Zitat Pacheco-Costa R, Hassan I, Reginato RD, Davis HM, Bruzzaniti A, Allen MR, et al. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation. J Biol Chem. 2014;289(12):8508–20.CrossRefPubMedPubMedCentral Pacheco-Costa R, Hassan I, Reginato RD, Davis HM, Bruzzaniti A, Allen MR, et al. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation. J Biol Chem. 2014;289(12):8508–20.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Little RD, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.CrossRefPubMed Little RD, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.CrossRefPubMed
63.
Zurück zum Zitat Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003;18(6):960–74.CrossRefPubMed Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003;18(6):960–74.CrossRefPubMed
Metadaten
Titel
Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry
verfasst von
David W. Rowe
Douglas J. Adams
Seung-Hyun Hong
Caibin Zhang
Dong-Guk Shin
C. Renata Rydzik
Li Chen
Zhihua Wu
Gaven Garland
Dana A. Godfrey
John P. Sundberg
Cheryl Ackert-Bicknell
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 2/2018
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0421-4

Weitere Artikel der Ausgabe 2/2018

Current Osteoporosis Reports 2/2018 Zur Ausgabe

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Clinical and Research Approaches to Treat Non-union Fracture

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Transcriptional Mechanisms of Secondary Fracture Healing

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

Progress of Regenerative Therapy in Orthopedics

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.