Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2013

01.12.2013 | Review Paper

Proteomics Strategies to Identify SUMO Targets and Acceptor Sites: A Survey of RNA-Binding Proteins SUMOylation

verfasst von: Giuseppe Filosa, Silvia M. L. Barabino, Angela Bachi

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.
Literatur
Zurück zum Zitat Altelaar, A. F., Munoz, J., & Heck, A. J. (2013). Next-generation proteomics: Towards an integrative view of proteome dynamics. Nature Reviews Genetics, 14, 35–48.PubMedCrossRef Altelaar, A. F., Munoz, J., & Heck, A. J. (2013). Next-generation proteomics: Towards an integrative view of proteome dynamics. Nature Reviews Genetics, 14, 35–48.PubMedCrossRef
Zurück zum Zitat Babic, I., Cherry, E., & Fujita, D. J. (2006). SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene, 25, 4955–4964.PubMedCrossRef Babic, I., Cherry, E., & Fujita, D. J. (2006). SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene, 25, 4955–4964.PubMedCrossRef
Zurück zum Zitat Ban, R., Nishida, T., & Urano, T. (2011). Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes to Cells, 16, 652–669.PubMedCrossRef Ban, R., Nishida, T., & Urano, T. (2011). Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes to Cells, 16, 652–669.PubMedCrossRef
Zurück zum Zitat Becker, J., Barysch, S. V., Karaca, S., Dittner, C., Hsiao, H.-H., & Melchior, F. (2013). Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural & Molecular Biology, 20, 525–531.CrossRef Becker, J., Barysch, S. V., Karaca, S., Dittner, C., Hsiao, H.-H., & Melchior, F. (2013). Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural & Molecular Biology, 20, 525–531.CrossRef
Zurück zum Zitat Benson, M. D., Li, Q. J., Kieckhafer, K., Dudek, D., Whorton, M. R., Sunahara, R. K., et al. (2007). SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proceedings of the National Academy of Sciences of the United States of America, 104, 1805–1810.PubMedCrossRef Benson, M. D., Li, Q. J., Kieckhafer, K., Dudek, D., Whorton, M. R., Sunahara, R. K., et al. (2007). SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proceedings of the National Academy of Sciences of the United States of America, 104, 1805–1810.PubMedCrossRef
Zurück zum Zitat Blomster, H., Hietakangas, V., Wu, J., Kouvonen, P., Hautaniemi, S., & Sistonen, L. (2009). Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Molecular and Cellular Proteomics, 8, 1382–1390.PubMedCrossRef Blomster, H., Hietakangas, V., Wu, J., Kouvonen, P., Hautaniemi, S., & Sistonen, L. (2009). Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Molecular and Cellular Proteomics, 8, 1382–1390.PubMedCrossRef
Zurück zum Zitat Blomster, H., Imanishi, S. Y., Siimes, J., Kastu, J., Morrice, N., Eriksson, J., et al. (2010). In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. Journal of Biological Chemistry, 285, 19324–19329.PubMedCrossRef Blomster, H., Imanishi, S. Y., Siimes, J., Kastu, J., Morrice, N., Eriksson, J., et al. (2010). In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. Journal of Biological Chemistry, 285, 19324–19329.PubMedCrossRef
Zurück zum Zitat Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., & Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. Journal of Biological Chemistry, 279, 27233–27238.PubMedCrossRef Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., & Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. Journal of Biological Chemistry, 279, 27233–27238.PubMedCrossRef
Zurück zum Zitat Bomsztyk, K., Denisenko, O., & Ostrowski, J. (2004). hnRNP K: One protein multiple processes. BioEssays, 26, 629–638.PubMedCrossRef Bomsztyk, K., Denisenko, O., & Ostrowski, J. (2004). hnRNP K: One protein multiple processes. BioEssays, 26, 629–638.PubMedCrossRef
Zurück zum Zitat Bruderer, R., Tatham, M. H., Plechanovova, A., Matic, I., Garg, A. K., & Hay, R. T. (2011). Purification and identification of endogenous polySUMO conjugates. EMBO Reports, 12, 142–148.PubMedCrossRef Bruderer, R., Tatham, M. H., Plechanovova, A., Matic, I., Garg, A. K., & Hay, R. T. (2011). Purification and identification of endogenous polySUMO conjugates. EMBO Reports, 12, 142–148.PubMedCrossRef
Zurück zum Zitat Burghes, A. H. M., & Beattie, C. E. (2009). Spinal muscular atrophy: Why do low levels of survival motor neuron protein make motor neurons sick? Nature Reviews Neuroscience, 10, 597–609.PubMedCrossRef Burghes, A. H. M., & Beattie, C. E. (2009). Spinal muscular atrophy: Why do low levels of survival motor neuron protein make motor neurons sick? Nature Reviews Neuroscience, 10, 597–609.PubMedCrossRef
Zurück zum Zitat Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q., & Ronai, Z. (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 101, 753–762.PubMedCrossRef Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q., & Ronai, Z. (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 101, 753–762.PubMedCrossRef
Zurück zum Zitat Chicooree, N., Griffiths, J. R., Connolly, Y., Tan, C.-T., Malliri, A., Eyers, C. E., et al. (2013). A novel approach to the analysis of SUMOylation with the independent use of trypsin and elastase digestion followed by database searching utilising consecutive residue addition to lysine. Rapid Communications in Mass Spectrometry, 27, 127–134.PubMedCrossRef Chicooree, N., Griffiths, J. R., Connolly, Y., Tan, C.-T., Malliri, A., Eyers, C. E., et al. (2013). A novel approach to the analysis of SUMOylation with the independent use of trypsin and elastase digestion followed by database searching utilising consecutive residue addition to lysine. Rapid Communications in Mass Spectrometry, 27, 127–134.PubMedCrossRef
Zurück zum Zitat Cioce, M., & Lamond, A. I. (2005). Cajal bodies: A long history of discovery. Annual Review of Cell and Developmental Biology, 21, 105–131.PubMedCrossRef Cioce, M., & Lamond, A. I. (2005). Cajal bodies: A long history of discovery. Annual Review of Cell and Developmental Biology, 21, 105–131.PubMedCrossRef
Zurück zum Zitat Da Cruz, S., & Cleveland, D. W. (2011). Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Current Opinion in Neurobiology, 21, 904–919.PubMedCrossRef Da Cruz, S., & Cleveland, D. W. (2011). Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Current Opinion in Neurobiology, 21, 904–919.PubMedCrossRef
Zurück zum Zitat Da Silva-Ferrada, E., Lopitz-Otsoa, F., Lang, V., Rodríguez, M. S., & Matthiesen, R. (2012). Strategies to identify recognition signals and targets of SUMOylation. Biochemistry Reserch International, 2012, 875148. Da Silva-Ferrada, E., Lopitz-Otsoa, F., Lang, V., Rodríguez, M. S., & Matthiesen, R. (2012). Strategies to identify recognition signals and targets of SUMOylation. Biochemistry Reserch International, 2012, 875148.
Zurück zum Zitat Danielsen, J. R., Povlsen, L. K., Villumsen, B. H., Streicher, W., Nilsson, J., Wikström, M., et al. (2012). DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. Journal of Cell Biology, 197, 179–187.PubMedCrossRef Danielsen, J. R., Povlsen, L. K., Villumsen, B. H., Streicher, W., Nilsson, J., Wikström, M., et al. (2012). DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. Journal of Cell Biology, 197, 179–187.PubMedCrossRef
Zurück zum Zitat Davis, B. N., Hilyard, A. C., Lagna, G., & Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 454, 56–61.PubMedCrossRef Davis, B. N., Hilyard, A. C., Lagna, G., & Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 454, 56–61.PubMedCrossRef
Zurück zum Zitat Desterro, J. M., Keegan, L. P., Jaffray, E., Hay, R. T., Connell, M. A. O., & Carmo-fonseca, M. (2005). SUMO-1 modification alters ADAR1 editing activity. Molecular Biology of Cell, 16, 5115–5126. Desterro, J. M., Keegan, L. P., Jaffray, E., Hay, R. T., Connell, M. A. O., & Carmo-fonseca, M. (2005). SUMO-1 modification alters ADAR1 editing activity. Molecular Biology of Cell, 16, 5115–5126.
Zurück zum Zitat Desterro, J. M., Rodriguez, M. S., & Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular Cell, 2, 233–239.PubMedCrossRef Desterro, J. M., Rodriguez, M. S., & Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular Cell, 2, 233–239.PubMedCrossRef
Zurück zum Zitat Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274, 10618–10624.PubMedCrossRef Desterro, J. M., Rodriguez, M. S., Kemp, G. D., & Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. Journal of Biological Chemistry, 274, 10618–10624.PubMedCrossRef
Zurück zum Zitat Desterro, J. M., Thomson, J., & Hay, R. T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Letters, 417, 297–300.PubMedCrossRef Desterro, J. M., Thomson, J., & Hay, R. T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Letters, 417, 297–300.PubMedCrossRef
Zurück zum Zitat Eberl, H. C., Mann, M., & Vermeulen, M. (2011). Quantitative proteomics for epigenetics. ChemBioChem, 12, 224–234.PubMedCrossRef Eberl, H. C., Mann, M., & Vermeulen, M. (2011). Quantitative proteomics for epigenetics. ChemBioChem, 12, 224–234.PubMedCrossRef
Zurück zum Zitat Eichinger, C. S., & Jentsch, S. (2010). Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proceedings of the National Academy of Sciences of the United States of America, 107, 11370–11375.PubMedCrossRef Eichinger, C. S., & Jentsch, S. (2010). Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proceedings of the National Academy of Sciences of the United States of America, 107, 11370–11375.PubMedCrossRef
Zurück zum Zitat Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I., et al. (1988). Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Molecular and Cellular Biology, 8, 2159–2165.PubMed Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I., et al. (1988). Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Molecular and Cellular Biology, 8, 2159–2165.PubMed
Zurück zum Zitat Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C. R., Arnoult, D., Keller, P. J., et al. (2009). SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. The FASEB Journal, 23, 3917–3927.CrossRef Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C. R., Arnoult, D., Keller, P. J., et al. (2009). SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. The FASEB Journal, 23, 3917–3927.CrossRef
Zurück zum Zitat Finkbeiner, E., Haindl, M., & Muller, S. (2011). The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO Journal, 30, 1067–1078.PubMedCrossRef Finkbeiner, E., Haindl, M., & Muller, S. (2011). The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO Journal, 30, 1067–1078.PubMedCrossRef
Zurück zum Zitat Flotho, A., Werner, A., Winter, T., Frank, A. S., Ehret, H., & Melchior, F. (2012). Recombinant reconstitution of sumoylation reactions in vitro. Methods in Molecular Biology, 832, 93–110.PubMedCrossRef Flotho, A., Werner, A., Winter, T., Frank, A. S., Ehret, H., & Melchior, F. (2012). Recombinant reconstitution of sumoylation reactions in vitro. Methods in Molecular Biology, 832, 93–110.PubMedCrossRef
Zurück zum Zitat Fok, V., Friend, K., & Steitz, J. A. (2006). Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. Journal of Cell Biology, 173, 319–325.PubMedCrossRef Fok, V., Friend, K., & Steitz, J. A. (2006). Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. Journal of Cell Biology, 173, 319–325.PubMedCrossRef
Zurück zum Zitat Galisson, F., Mahrouche, L., Courcelles, M., Bonneil, E., Meloche, S., Chelbi-Alix, M. K., & Thibault, P. (2011). A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Molecular & Cellular Proteomics, 10, M110.004796. Galisson, F., Mahrouche, L., Courcelles, M., Bonneil, E., Meloche, S., Chelbi-Alix, M. K., & Thibault, P. (2011). A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Molecular & Cellular Proteomics, 10, M110.004796.
Zurück zum Zitat Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews Molecular Cell Biology, 8, 947–956.PubMedCrossRef Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews Molecular Cell Biology, 8, 947–956.PubMedCrossRef
Zurück zum Zitat Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 582, 1977–1986.PubMedCrossRef Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 582, 1977–1986.PubMedCrossRef
Zurück zum Zitat Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 26, 2. Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., Yin, Y., Nakamura, A., et al. (2009). System-wide changes to SUMO modifications in response to heat shock. Science Signaling, 26, 2.
Zurück zum Zitat Golebiowski, F., Tatham, M. H., Nakamura, A., & Hay, R. T. (2010). High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nature Protocols, 5, 873–882.PubMedCrossRef Golebiowski, F., Tatham, M. H., Nakamura, A., & Hay, R. T. (2010). High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nature Protocols, 5, 873–882.PubMedCrossRef
Zurück zum Zitat Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genetics, 36, 837–841.PubMedCrossRef Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genetics, 36, 837–841.PubMedCrossRef
Zurück zum Zitat Haindl, M., Harasim, T., Eick, D., & Muller, S. (2008). The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Reports, 9, 273–279.PubMedCrossRef Haindl, M., Harasim, T., Eick, D., & Muller, S. (2008). The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Reports, 9, 273–279.PubMedCrossRef
Zurück zum Zitat Hardeland, U., Steinacher, R., Jiricny, J., & Schär, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO Journal, 21, 1456–1464.PubMedCrossRef Hardeland, U., Steinacher, R., Jiricny, J., & Schär, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO Journal, 21, 1456–1464.PubMedCrossRef
Zurück zum Zitat Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281, 16117–16127.PubMedCrossRef Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., & Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281, 16117–16127.PubMedCrossRef
Zurück zum Zitat Hietakangas, V., Anckar, J., Blomster, H., Fujimoto, M., Palvimo, J. J., Nakai, A., et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the United States of America, 103, 45–50.PubMedCrossRef Hietakangas, V., Anckar, J., Blomster, H., Fujimoto, M., Palvimo, J. J., Nakai, A., et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the United States of America, 103, 45–50.PubMedCrossRef
Zurück zum Zitat Hong, W., Resnick, R. J., Rakowski, C., Shalloway, D., Taylor, S. J., & Blobel, G. A. (2002). Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68. Molecular Cancer Research, 1, 48–55.PubMed Hong, W., Resnick, R. J., Rakowski, C., Shalloway, D., Taylor, S. J., & Blobel, G. A. (2002). Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68. Molecular Cancer Research, 1, 48–55.PubMed
Zurück zum Zitat Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., & Sullivan, M. (2012). PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research, 40, D261–270. Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., & Sullivan, M. (2012). PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research, 40, D261–270.
Zurück zum Zitat Hsiao, H. H., Meulmeester, E., Frank, B. T. C., Melchior, F., & Urlaub, H. (2009). “ChopNSpice”, a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Molecular and Cellular Proteomics, 8, 2664–2675.PubMedCrossRef Hsiao, H. H., Meulmeester, E., Frank, B. T. C., Melchior, F., & Urlaub, H. (2009). “ChopNSpice”, a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Molecular and Cellular Proteomics, 8, 2664–2675.PubMedCrossRef
Zurück zum Zitat Iijima, T., Wu, K., Witte, H., Hanno-Iijima, Y., Glatter, T., Richard, S., et al. (2011). SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell, 147, 1601–1614.PubMedCrossRef Iijima, T., Wu, K., Witte, H., Hanno-Iijima, Y., Glatter, T., Richard, S., et al. (2011). SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell, 147, 1601–1614.PubMedCrossRef
Zurück zum Zitat Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73, 355–382.PubMedCrossRef Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73, 355–382.PubMedCrossRef
Zurück zum Zitat Johnson, E. S., & Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of Biological Chemistry, 272, 26799–26802.PubMedCrossRef Johnson, E. S., & Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of Biological Chemistry, 272, 26799–26802.PubMedCrossRef
Zurück zum Zitat Kim, J. S., & Raines, R. T. (1994). A misfolded but active dimer of bovine seminal ribonuclease. European Journal of Biochemistry, 224, 109–114.PubMedCrossRef Kim, J. S., & Raines, R. T. (1994). A misfolded but active dimer of bovine seminal ribonuclease. European Journal of Biochemistry, 224, 109–114.PubMedCrossRef
Zurück zum Zitat Kirsh, O., Seeler, J. S., Pichler, A., Melchior, F., & Dejean, A. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO Journal, 21, 2682–2691.PubMedCrossRef Kirsh, O., Seeler, J. S., Pichler, A., Melchior, F., & Dejean, A. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO Journal, 21, 2682–2691.PubMedCrossRef
Zurück zum Zitat Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., Van Dijk, W. J., Fish, A., et al. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Molecular Cell, 31, 371–382.PubMedCrossRef Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., Van Dijk, W. J., Fish, A., et al. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Molecular Cell, 31, 371–382.PubMedCrossRef
Zurück zum Zitat Knuesel, M., Cheung, H. T., Hamady, M., Barthel, K. K. B., & Liu, X. (2005). A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Molecular and Cellular Proteomics, 4, 1626–1636.PubMedCrossRef Knuesel, M., Cheung, H. T., Hamady, M., Barthel, K. K. B., & Liu, X. (2005). A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Molecular and Cellular Proteomics, 4, 1626–1636.PubMedCrossRef
Zurück zum Zitat Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., et al. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular & Cellular Proteomics. doi:10.1074/mcp.M112.025569. Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., et al. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular & Cellular Proteomics. doi:10.​1074/​mcp.​M112.​025569.
Zurück zum Zitat Lattante, S., Rouleau, G., & Kabashi, E. (2013). TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update. Human Mutation, 34, 812–826.PubMedCrossRef Lattante, S., Rouleau, G., & Kabashi, E. (2013). TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update. Human Mutation, 34, 812–826.PubMedCrossRef
Zurück zum Zitat Lin, D. Y., Huang, Y. S., Jeng, J. C., & Shih, H. M. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular Cell, 24, 341–354.PubMedCrossRef Lin, D. Y., Huang, Y. S., Jeng, J. C., & Shih, H. M. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular Cell, 24, 341–354.PubMedCrossRef
Zurück zum Zitat Mahajan, R., Gerace, L., & Melchior, F. (1998). Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. Journal of Cell Biology, 140, 259–270.PubMedCrossRef Mahajan, R., Gerace, L., & Melchior, F. (1998). Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. Journal of Cell Biology, 140, 259–270.PubMedCrossRef
Zurück zum Zitat Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447, 321–325.PubMedCrossRef Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447, 321–325.PubMedCrossRef
Zurück zum Zitat Matafora, V., D’Amato, A., Mori, S., Blasi, F., & Bachi, A. (2009). Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Molecular and Cellular Proteomics, 8, 2243–2255.PubMedCrossRef Matafora, V., D’Amato, A., Mori, S., Blasi, F., & Bachi, A. (2009). Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Molecular and Cellular Proteomics, 8, 2243–2255.PubMedCrossRef
Zurück zum Zitat Matic, I., Schimmel, J., Hendriks, I., Van Santen, M., Van de Rijke, F., Van Dam, H., et al. (2010). Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Molecular Cell, 39, 641–652.PubMedCrossRef Matic, I., Schimmel, J., Hendriks, I., Van Santen, M., Van de Rijke, F., Van Dam, H., et al. (2010). Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Molecular Cell, 39, 641–652.PubMedCrossRef
Zurück zum Zitat Minty, A., Dumont, X., Kaghad, M., & Caput, D. (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. Journal of Biological Chemistry, 275, 36316–36323.PubMedCrossRef Minty, A., Dumont, X., Kaghad, M., & Caput, D. (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. Journal of Biological Chemistry, 275, 36316–36323.PubMedCrossRef
Zurück zum Zitat Mooney, S. M., Grande, J. P., Salisbury, J. L., & Janknecht, R. (2010). Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry, 49, 1–10.PubMedCrossRef Mooney, S. M., Grande, J. P., Salisbury, J. L., & Janknecht, R. (2010). Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry, 49, 1–10.PubMedCrossRef
Zurück zum Zitat Morlando, M., Modigliani, S. D., Torrelli, G., Rosa, A., Di Carlo, V., Caffarelli, E., et al. (2012). FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO Journal, 31, 4502–4510.PubMedCrossRef Morlando, M., Modigliani, S. D., Torrelli, G., Rosa, A., Di Carlo, V., Caffarelli, E., et al. (2012). FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO Journal, 31, 4502–4510.PubMedCrossRef
Zurück zum Zitat Morris, J. R., Boutell, C., Keppler, M., Densham, R., & Solomon, E. (2009). The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 462, 886–890.PubMedCrossRef Morris, J. R., Boutell, C., Keppler, M., Densham, R., & Solomon, E. (2009). The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 462, 886–890.PubMedCrossRef
Zurück zum Zitat Moumen, A., Masterson, P., O’Connor, M. J., & Jackson, S. P. (2005). hnRNP K: An HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell, 123, 1065–1078.PubMedCrossRef Moumen, A., Masterson, P., O’Connor, M. J., & Jackson, S. P. (2005). hnRNP K: An HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell, 123, 1065–1078.PubMedCrossRef
Zurück zum Zitat Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: The SUMO proteases. Trends in Biochemical Sciences, 32, 286–295.PubMedCrossRef Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: The SUMO proteases. Trends in Biochemical Sciences, 32, 286–295.PubMedCrossRef
Zurück zum Zitat Müller, S., Matunis, M. J., & Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO Journal, 17, 61–70.PubMedCrossRef Müller, S., Matunis, M. J., & Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO Journal, 17, 61–70.PubMedCrossRef
Zurück zum Zitat Navascues, J., Bengoechea, R., Tapia, O., Casafont, I., Berciano, M. T., & Lafarga, M. (2008). SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. Journal of Structural Biology, 163, 137–146.PubMedCrossRef Navascues, J., Bengoechea, R., Tapia, O., Casafont, I., Berciano, M. T., & Lafarga, M. (2008). SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. Journal of Structural Biology, 163, 137–146.PubMedCrossRef
Zurück zum Zitat Oh, S. M., Liu, Z., Okada, M., Jang, S. W., Liu, X., Chan, C. B., et al. (2010). Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity. Oncogene, 29, 1017–1030.PubMedCrossRef Oh, S. M., Liu, Z., Okada, M., Jang, S. W., Liu, X., Chan, C. B., et al. (2010). Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity. Oncogene, 29, 1017–1030.PubMedCrossRef
Zurück zum Zitat Ong, S. E. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular and Cellular Proteomics, 1, 376–386.PubMedCrossRef Ong, S. E. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular and Cellular Proteomics, 1, 376–386.PubMedCrossRef
Zurück zum Zitat Osula, O., Swatkoski, S., & Cotter, R. J. (2012). Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. Journal of Mass Spectrometry, 47, 644–654.PubMedCrossRef Osula, O., Swatkoski, S., & Cotter, R. J. (2012). Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion. Journal of Mass Spectrometry, 47, 644–654.PubMedCrossRef
Zurück zum Zitat Pedrioli, P. G. A., Raught, B., Zhang, X., Rogers, R., Aitchison, J., Matunis, M., et al. (2006). Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nature Methods, 3, 533–539.PubMedCrossRef Pedrioli, P. G. A., Raught, B., Zhang, X., Rogers, R., Aitchison, J., Matunis, M., et al. (2006). Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nature Methods, 3, 533–539.PubMedCrossRef
Zurück zum Zitat Pedrotti, S., Bielli, P., Paronetto, M. P., Ciccosanti, F., Fimia, G. M., Stamm, S., et al. (2010). The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. The EMBO Journal, 29, 1235–1247.PubMedCrossRef Pedrotti, S., Bielli, P., Paronetto, M. P., Ciccosanti, F., Fimia, G. M., Stamm, S., et al. (2010). The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. The EMBO Journal, 29, 1235–1247.PubMedCrossRef
Zurück zum Zitat Pelisch, F., Gerez, J., Druker, J., Schor, I. E., Muñoz, M. J., Risso, G., et al. (2010). The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proceedings of the National Academy of Sciences of the United States of America, 107, 16119–16124.PubMedCrossRef Pelisch, F., Gerez, J., Druker, J., Schor, I. E., Muñoz, M. J., Risso, G., et al. (2010). The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proceedings of the National Academy of Sciences of the United States of America, 107, 16119–16124.PubMedCrossRef
Zurück zum Zitat Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H., & Goldstein, S. A. (2005). Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell, 121, 37–47.PubMedCrossRef Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H., & Goldstein, S. A. (2005). Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell, 121, 37–47.PubMedCrossRef
Zurück zum Zitat Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., et al. (2009). Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics, 9, 3409–3412.PubMedCrossRef Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., et al. (2009). Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics, 9, 3409–3412.PubMedCrossRef
Zurück zum Zitat Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17, 7–9.CrossRef Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17, 7–9.CrossRef
Zurück zum Zitat Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H., & Wilson, V. G. (2005). A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Molecular & Cellular Proteomics, 56–72. Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H., & Wilson, V. G. (2005). A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Molecular & Cellular Proteomics, 56–72.
Zurück zum Zitat Russell, R., Jarmoskaite, I., & Lambowitz, A. M. (2013). Toward a molecular understanding of RNA remodeling by DEAD-box proteins. RNA Biology, 10, 44–55.PubMedCrossRef Russell, R., Jarmoskaite, I., & Lambowitz, A. M. (2013). Toward a molecular understanding of RNA remodeling by DEAD-box proteins. RNA Biology, 10, 44–55.PubMedCrossRef
Zurück zum Zitat Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275, 6252–6258.PubMedCrossRef Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275, 6252–6258.PubMedCrossRef
Zurück zum Zitat Sampson, D., Wang, M., & Matunis, M. J. (2001). Ubc9 binding and is essential for SUMO-1 modification. Journal of Biological Chemistry, 276, 21664–21669.PubMedCrossRef Sampson, D., Wang, M., & Matunis, M. J. (2001). Ubc9 binding and is essential for SUMO-1 modification. Journal of Biological Chemistry, 276, 21664–21669.PubMedCrossRef
Zurück zum Zitat Sansam, C. L., Wells, K. S., & Emeson, R. B. (2003). Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proceedings of the National Academy of Sciences of the United States of America, 100, 14018–14023.PubMedCrossRef Sansam, C. L., Wells, K. S., & Emeson, R. B. (2003). Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proceedings of the National Academy of Sciences of the United States of America, 100, 14018–14023.PubMedCrossRef
Zurück zum Zitat Schimmel, J., Larsen, K. M., Matic, I., Van Hagen, M., Cox, J., Mann, M., et al. (2008). The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Molecular and Cellular Proteomics, 7, 2107–2122.PubMedCrossRef Schimmel, J., Larsen, K. M., Matic, I., Van Hagen, M., Cox, J., Mann, M., et al. (2008). The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Molecular and Cellular Proteomics, 7, 2107–2122.PubMedCrossRef
Zurück zum Zitat Seeler, J. S., & Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nature Reviews Molecular Cell Biology, 4, 690–699.PubMedCrossRef Seeler, J. S., & Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nature Reviews Molecular Cell Biology, 4, 690–699.PubMedCrossRef
Zurück zum Zitat Sette, C. (2010). Post-translational regulation of star proteins and effects on their biological functions. Advances in Experimental Medicine and Biology, 693, 54–66.PubMedCrossRef Sette, C. (2010). Post-translational regulation of star proteins and effects on their biological functions. Advances in Experimental Medicine and Biology, 693, 54–66.PubMedCrossRef
Zurück zum Zitat Seyfried, N. T., Gozal, Y. M., Dammer, E. B., Xia, Q., Duong, D. M., Cheng, D., et al. (2010). Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Molecular and Cellular Proteomics, 9, 705–718.PubMedCrossRef Seyfried, N. T., Gozal, Y. M., Dammer, E. B., Xia, Q., Duong, D. M., Cheng, D., et al. (2010). Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Molecular and Cellular Proteomics, 9, 705–718.PubMedCrossRef
Zurück zum Zitat Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13, 96–108.PubMedCrossRef Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13, 96–108.PubMedCrossRef
Zurück zum Zitat Song, J., Durrin, L. K., Wilkinson, T., Krontiris, T. G., & Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 14373–14378.PubMedCrossRef Song, J., Durrin, L. K., Wilkinson, T., Krontiris, T. G., & Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 14373–14378.PubMedCrossRef
Zurück zum Zitat Steen, H., & Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology, 5, 699–711.PubMedCrossRef Steen, H., & Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology, 5, 699–711.PubMedCrossRef
Zurück zum Zitat Stehmeier, P., & Muller, S. (2009a). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Molecular Cell, 33, 400–409.PubMedCrossRef Stehmeier, P., & Muller, S. (2009a). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Molecular Cell, 33, 400–409.PubMedCrossRef
Zurück zum Zitat Stehmeier, P., & Muller, S. (2009b). Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair Amst, 8, 491–498.PubMedCrossRef Stehmeier, P., & Muller, S. (2009b). Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair Amst, 8, 491–498.PubMedCrossRef
Zurück zum Zitat Sternsdorf, T., Jensen, K., Reich, B., & Will, H. (1999). The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. Journal of Biological Chemistry, 274, 12555–12566.PubMedCrossRef Sternsdorf, T., Jensen, K., Reich, B., & Will, H. (1999). The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. Journal of Biological Chemistry, 274, 12555–12566.PubMedCrossRef
Zurück zum Zitat Tago, K., Chiocca, S., & Sherr, C. J. (2005). Sumoylation induced by the Arf tumor suppressor: A p53-independent function. Proceedings of the National Academy of Sciences of the United States of America, 102, 7689–7694.PubMedCrossRef Tago, K., Chiocca, S., & Sherr, C. J. (2005). Sumoylation induced by the Arf tumor suppressor: A p53-independent function. Proceedings of the National Academy of Sciences of the United States of America, 102, 7689–7694.PubMedCrossRef
Zurück zum Zitat Tang, Z., El Far, O., Betz, H., & Scheschonka, A. (2005). Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. Journal of Biological Chemistry, 280, 38153–38159.PubMedCrossRef Tang, Z., El Far, O., Betz, H., & Scheschonka, A. (2005). Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. Journal of Biological Chemistry, 280, 38153–38159.PubMedCrossRef
Zurück zum Zitat Tatham, M. H., Rodriguez, M. S., Xirodimas, D. P., & Hay, R. T. (2009). Detection of protein SUMOylation in vivo. Nature Protocols, 4, 1363–1371.PubMedCrossRef Tatham, M. H., Rodriguez, M. S., Xirodimas, D. P., & Hay, R. T. (2009). Detection of protein SUMOylation in vivo. Nature Protocols, 4, 1363–1371.PubMedCrossRef
Zurück zum Zitat Taylor, S. J., Resnick, R. J., & Shalloway, D. (2004). Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biology, 5, 5.PubMedCrossRef Taylor, S. J., Resnick, R. J., & Shalloway, D. (2004). Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biology, 5, 5.PubMedCrossRef
Zurück zum Zitat Tirard, M., Hsiao, H.-H., Nikolov, M., Urlaub, H., Melchior, F., & Brose, N. (2012). In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 109, 21122–21127.PubMedCrossRef Tirard, M., Hsiao, H.-H., Nikolov, M., Urlaub, H., Melchior, F., & Brose, N. (2012). In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 109, 21122–21127.PubMedCrossRef
Zurück zum Zitat Van Niekerk, E., Willis, D. E., Chang, J. H., Reumann, K., Heise, T., & Twiss, J. L. (2007). Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proceedings of the National Academy of Sciences of the United States of America, 104, 12913–12918.PubMedCrossRef Van Niekerk, E., Willis, D. E., Chang, J. H., Reumann, K., Heise, T., & Twiss, J. L. (2007). Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proceedings of the National Academy of Sciences of the United States of America, 104, 12913–12918.PubMedCrossRef
Zurück zum Zitat Vassileva, M. T., Matunis, M. J., Vassileva, M. T., & Matunis, M. J. (2004). SUMO modification of heterogeneous nuclear ribonucleoproteins SUMO modification of heterogeneous nuclear ribonucleoproteins. Molecular and Cellular Biology, 24, 3623–3632.PubMedCrossRef Vassileva, M. T., Matunis, M. J., Vassileva, M. T., & Matunis, M. J. (2004). SUMO modification of heterogeneous nuclear ribonucleoproteins SUMO modification of heterogeneous nuclear ribonucleoproteins. Molecular and Cellular Biology, 24, 3623–3632.PubMedCrossRef
Zurück zum Zitat Vertegaal, A. C. O., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M., & Lamond, A. I. (2006). Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Molecular and Cellular Proteomics, 5, 2298–2310.PubMedCrossRef Vertegaal, A. C. O., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M., & Lamond, A. I. (2006). Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Molecular and Cellular Proteomics, 5, 2298–2310.PubMedCrossRef
Zurück zum Zitat Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., & Lamond, A. I. (2004). A proteomic study of SUMO-2 target proteins. Journal of Biological Chemistry, 279, 33791–33798.PubMedCrossRef Vertegaal, A. C., Ogg, S. C., Jaffray, E., Rodriguez, M. S., & Lamond, A. I. (2004). A proteomic study of SUMO-2 target proteins. Journal of Biological Chemistry, 279, 33791–33798.PubMedCrossRef
Zurück zum Zitat Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., Mann, M., & Choudhary C. (2011). A proteome-wide quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Molecular & Cellular Proteomics, 10, M111.013284. Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., Mann, M., & Choudhary C. (2011). A proteome-wide quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Molecular & Cellular Proteomics, 10, M111.013284.
Zurück zum Zitat Wahle, S., Rohweder, H., Ribbe, J., & Steinert, K. (1999). Purification of 6xHis-tagged proteins from mammalian expression systems using Ni-NTA magnetic agarose beads. QIAGEN News, 1999(4), 3. Wahle, S., Rohweder, H., Ribbe, J., & Steinert, K. (1999). Purification of 6xHis-tagged proteins from mammalian expression systems using Ni-NTA magnetic agarose beads. QIAGEN News, 1999(4), 3.
Zurück zum Zitat Westman, B. J., & Lamond, A. I. (2011). A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus, 2, 30–37.PubMedCrossRef Westman, B. J., & Lamond, A. I. (2011). A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus, 2, 30–37.PubMedCrossRef
Zurück zum Zitat Westman, B. J., Verheggen, C., Hutten, S., Lam, Y. W., Bertrand, E., & Lamond, A. I. (2010). A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Molecular Cell, 39, 618–631.PubMedCrossRef Westman, B. J., Verheggen, C., Hutten, S., Lam, Y. W., Bertrand, E., & Lamond, A. I. (2010). A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Molecular Cell, 39, 618–631.PubMedCrossRef
Zurück zum Zitat Wilkinson, K., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochemistry Journal, 428, 133–145.CrossRef Wilkinson, K., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochemistry Journal, 428, 133–145.CrossRef
Zurück zum Zitat Wolin, S. L., & Cedervall, T. (2002). The La protein. Annual Review of Biochemistry, 71, 375–403.PubMedCrossRef Wolin, S. L., & Cedervall, T. (2002). The La protein. Annual Review of Biochemistry, 71, 375–403.PubMedCrossRef
Zurück zum Zitat Xu, J., He, Y., Qiang, B., Yuan, J., Peng, X., & Pan, X.-M. (2008). A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics, 8, 8.CrossRef Xu, J., He, Y., Qiang, B., Yuan, J., Peng, X., & Pan, X.-M. (2008). A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics, 8, 8.CrossRef
Zurück zum Zitat Xu, G., Paige, J. S., & Jaffrey, S. R. (2010). Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotechnology, 28, 868–873.PubMedCrossRef Xu, G., Paige, J. S., & Jaffrey, S. R. (2010). Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotechnology, 28, 868–873.PubMedCrossRef
Zurück zum Zitat Yang, S. H., Galanis, A., Witty, J., & Sharrocks, A. D. (2006). An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO Journal, 25, 5083–5093.PubMedCrossRef Yang, S. H., Galanis, A., Witty, J., & Sharrocks, A. D. (2006). An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO Journal, 25, 5083–5093.PubMedCrossRef
Zurück zum Zitat Yang, C., Maiguel, D., & Carrier, F. (2002). Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Research, 30, 2251–2260.PubMedCrossRef Yang, C., Maiguel, D., & Carrier, F. (2002). Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Research, 30, 2251–2260.PubMedCrossRef
Zurück zum Zitat Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S., Plotnikova, O., et al. (2008). Structural insights into human KAP1 PHD finger–bromodomain and its role in gene silencing. Nature Structural & Molecular Biology, 15, 626–633.CrossRef Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S., Plotnikova, O., et al. (2008). Structural insights into human KAP1 PHD finger–bromodomain and its role in gene silencing. Nature Structural & Molecular Biology, 15, 626–633.CrossRef
Zurück zum Zitat Zhao, Y., Kwon, S. W., Anselmo, A., Kaur, K., & White, M. (2004). Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. Journal of Biological Chemistry, 279, 20999–21002.PubMedCrossRef Zhao, Y., Kwon, S. W., Anselmo, A., Kaur, K., & White, M. (2004). Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. Journal of Biological Chemistry, 279, 20999–21002.PubMedCrossRef
Metadaten
Titel
Proteomics Strategies to Identify SUMO Targets and Acceptor Sites: A Survey of RNA-Binding Proteins SUMOylation
verfasst von
Giuseppe Filosa
Silvia M. L. Barabino
Angela Bachi
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2013
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-013-8256-8

Weitere Artikel der Ausgabe 4/2013

NeuroMolecular Medicine 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.