Skip to main content
Erschienen in: The Cerebellum 4/2011

01.12.2011

Sensory Integration, Sensory Processing, and Sensory Modulation Disorders: Putative Functional Neuroanatomic Underpinnings

verfasst von: Leonard F. Koziol, Deborah Ely Budding, Dana Chidekel

Erschienen in: The Cerebellum | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

This paper examines conditions that have variously been called sensory integration disorder, sensory processing disorder, and sensory modulation disorder (SID/SPD/SMD). As these conditions lack readily and consistently agreed-upon operational definitions, there has been confusion as to how these disorders are conceptualized. Rather than addressing various diagnostic controversies, we will instead focus upon explaining the symptoms that are believed to characterize these disorders. First, to clarify the overall context within which to view symptoms, we summarize a paradigm of adaptation characterized by continuous sensorimotor interaction with the environment. Next, we review a dual-tiered, integrated model of brain function in order to establish neuroanatomic underpinnings with which to conceptualize the symptom presentations. Generally accepted functions of the neocortex, basal ganglia, and cerebellum are described to illustrate how interactions between these brain regions generate both adaptive and pathological symptoms and behaviors. We then examine the symptoms of SID/SPD/SMD within this interactive model and in relation to their impact upon the development of inhibitory control, working memory, academic skill development, and behavioral automation. We present likely etiologies for these symptoms, not only as they drive neurodevelopmental pathologies but also as they can be understood as variations in the development of neural networks.
Literatur
1.
Zurück zum Zitat Ayres AJ. Sensory integration and the child. Los Angeles: Western Psychological Services; 2005. Ayres AJ. Sensory integration and the child. Los Angeles: Western Psychological Services; 2005.
2.
Zurück zum Zitat Ayres AJ. Types of sensory integrative dysfunction among disabled learners. Am J Occup Ther. 1972;26(1):13–8.PubMed Ayres AJ. Types of sensory integrative dysfunction among disabled learners. Am J Occup Ther. 1972;26(1):13–8.PubMed
3.
Zurück zum Zitat Bar-Shalita T, Vatine JJ, Seltzer Z, Parush S. Psychophysical correlates in children with sensory modulation disorder (SMD). Physiol Behav. 2009;98(5):631–9.PubMedCrossRef Bar-Shalita T, Vatine JJ, Seltzer Z, Parush S. Psychophysical correlates in children with sensory modulation disorder (SMD). Physiol Behav. 2009;98(5):631–9.PubMedCrossRef
4.
Zurück zum Zitat Dunn W. The Sensory Profile: a discriminating measure of sensory processing in daily life. Sens Integr Spec Interest Sect Q. 1997;20(1):1–3. Dunn W. The Sensory Profile: a discriminating measure of sensory processing in daily life. Sens Integr Spec Interest Sect Q. 1997;20(1):1–3.
5.
Zurück zum Zitat Zero to Three (Organization). DC:0-3R: diagnostic classification of mental health and developmental disorders of infancy and early childhood. Washington, DC: Zero To Three; 2005. Zero to Three (Organization). DC:0-3R: diagnostic classification of mental health and developmental disorders of infancy and early childhood. Washington, DC: Zero To Three; 2005.
6.
Zurück zum Zitat Hertza J, Estes B. Developmental dyspraxia and developmental coordination disorder. In: Davis AS, editor. Handbook of pediatric neuropsychology. New York: Springer; 2011. p. 593–602. Hertza J, Estes B. Developmental dyspraxia and developmental coordination disorder. In: Davis AS, editor. Handbook of pediatric neuropsychology. New York: Springer; 2011. p. 593–602.
7.
Zurück zum Zitat James K, Miller LJ, Schaaf R, Nielsen DM, Schoen SA. Phenotypes within sensory modulation dysfunction. Comprehensive Psychiatry; 2011. James K, Miller LJ, Schaaf R, Nielsen DM, Schoen SA. Phenotypes within sensory modulation dysfunction. Comprehensive Psychiatry; 2011.
8.
Zurück zum Zitat Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.
9.
Zurück zum Zitat Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedCrossRef Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedCrossRef
10.
Zurück zum Zitat Shadlen MN, Movshon JA. Synchrony unbound: review. A critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.PubMedCrossRef Shadlen MN, Movshon JA. Synchrony unbound: review. A critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.PubMedCrossRef
11.
12.
Zurück zum Zitat Cisek P, Puskas GA, El-Murr S. Decisions in changing conditions: the urgency-gating model. J Neurosci. 2009;29(37):11560–71.PubMedCrossRef Cisek P, Puskas GA, El-Murr S. Decisions in changing conditions: the urgency-gating model. J Neurosci. 2009;29(37):11560–71.PubMedCrossRef
13.
Zurück zum Zitat Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1585–99.PubMedCrossRef Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1585–99.PubMedCrossRef
14.
Zurück zum Zitat Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Frontiers in Psychology. 2011;2. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Frontiers in Psychology. 2011;2.
15.
17.
Zurück zum Zitat Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86. Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86.
18.
Zurück zum Zitat Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.PubMedCrossRef Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.PubMedCrossRef
19.
Zurück zum Zitat Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.PubMedCrossRef Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.PubMedCrossRef
20.
Zurück zum Zitat Baranek GT. Efficacy of sensory and motor interventions for children with autism. J Autism Dev Disord. 2002;32(5):397–422.PubMedCrossRef Baranek GT. Efficacy of sensory and motor interventions for children with autism. J Autism Dev Disord. 2002;32(5):397–422.PubMedCrossRef
21.
Zurück zum Zitat Schaaf RC, Davies PL. Evolution of the sensory integration frame of reference. Am J Occup Ther. 2010;64(3):363–7.PubMedCrossRef Schaaf RC, Davies PL. Evolution of the sensory integration frame of reference. Am J Occup Ther. 2010;64(3):363–7.PubMedCrossRef
22.
Zurück zum Zitat Reynolds S, Lane S. Diagnostic validity of sensory over-responsivity: a review of the literature and case reports. J Autism Dev Disord. 2008;38(3):516–29.PubMedCrossRef Reynolds S, Lane S. Diagnostic validity of sensory over-responsivity: a review of the literature and case reports. J Autism Dev Disord. 2008;38(3):516–29.PubMedCrossRef
23.
Zurück zum Zitat Wiggins LD, Robins DL, Bakeman R, Adamson LB. Brief report: sensory abnormalities as distinguishing symptoms of autism spectrum disorders in young children. J Autism Dev Disord. 2009;39(7):1087–91.PubMedCrossRef Wiggins LD, Robins DL, Bakeman R, Adamson LB. Brief report: sensory abnormalities as distinguishing symptoms of autism spectrum disorders in young children. J Autism Dev Disord. 2009;39(7):1087–91.PubMedCrossRef
24.
Zurück zum Zitat Reynolds S, Lane SJ. Sensory overresponsivity and anxiety in children with ADHD. Am J Occup Ther. 2009;63(4):433.PubMedCrossRef Reynolds S, Lane SJ. Sensory overresponsivity and anxiety in children with ADHD. Am J Occup Ther. 2009;63(4):433.PubMedCrossRef
25.
Zurück zum Zitat Boyd BA, Baranek GT, Sideris J, Poe MD, Watson LR, Patten E, et al. Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Res. 2010;3(2):78–87.PubMed Boyd BA, Baranek GT, Sideris J, Poe MD, Watson LR, Patten E, et al. Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Res. 2010;3(2):78–87.PubMed
26.
Zurück zum Zitat Baranek GT, Boyd BA, Poe MD, David FJ, Watson LR. Hyperresponsive sensory patterns in young children with autism, developmental delay, and typical development. Am J Ment Retard. 2007;112(4):233–45.PubMedCrossRef Baranek GT, Boyd BA, Poe MD, David FJ, Watson LR. Hyperresponsive sensory patterns in young children with autism, developmental delay, and typical development. Am J Ment Retard. 2007;112(4):233–45.PubMedCrossRef
27.
Zurück zum Zitat Cascio CJ. Somatosensory processing in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders. 2010;2(2):62–9.CrossRef Cascio CJ. Somatosensory processing in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders. 2010;2(2):62–9.CrossRef
28.
Zurück zum Zitat Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMedCrossRef Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMedCrossRef
29.
Zurück zum Zitat Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. 2007;46(7):907–18.CrossRef Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. 2007;46(7):907–18.CrossRef
30.
Zurück zum Zitat Green D, Baird G, Sugden D. A pilot study of psychopathology in developmental coordination disorder. Child Care Health Dev. 2006;32(6):741–50.PubMedCrossRef Green D, Baird G, Sugden D. A pilot study of psychopathology in developmental coordination disorder. Child Care Health Dev. 2006;32(6):741–50.PubMedCrossRef
31.
Zurück zum Zitat Zwicker JG, Missiuna C, Boyd LA. Neural correlates of developmental coordination disorder: a review of hypotheses. J Child Neurol. 2009;24(10):1273.PubMedCrossRef Zwicker JG, Missiuna C, Boyd LA. Neural correlates of developmental coordination disorder: a review of hypotheses. J Child Neurol. 2009;24(10):1273.PubMedCrossRef
32.
Zurück zum Zitat Marien P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. The Cerebellum. 2010;1–6. Marien P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. The Cerebellum. 2010;1–6.
33.
Zurück zum Zitat Davies PL, Gavin WJ. Validating the diagnosis of sensory processing disorders using EEG technology. Am J Occup Ther. 2007;61(2):176–89.PubMedCrossRef Davies PL, Gavin WJ. Validating the diagnosis of sensory processing disorders using EEG technology. Am J Occup Ther. 2007;61(2):176–89.PubMedCrossRef
34.
Zurück zum Zitat Schaaf RC, Benevides T, Blanche EI, Brett-Green BA, Burke JP, Cohn ES, et al. Parasympathetic functions in children with sensory processing disorder. Front Integr Neurosci. 2010;4:4.PubMedCrossRef Schaaf RC, Benevides T, Blanche EI, Brett-Green BA, Burke JP, Cohn ES, et al. Parasympathetic functions in children with sensory processing disorder. Front Integr Neurosci. 2010;4:4.PubMedCrossRef
35.
Zurück zum Zitat Schoen SA, Miller LJ, Brett-Green BA, Nielsen DM. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory modulation disorder. Frontiers in Integrative Neuroscience 2009;3. Schoen SA, Miller LJ, Brett-Green BA, Nielsen DM. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory modulation disorder. Frontiers in Integrative Neuroscience 2009;3.
36.
Zurück zum Zitat Schoen SA, Miller LJ, Brett-Green B, Reynolds S, Lane SJ. Arousal and reactivity in children with sensory processing disorder and autism spectrum disorder. Psychophysiology 2008;45. Schoen SA, Miller LJ, Brett-Green B, Reynolds S, Lane SJ. Arousal and reactivity in children with sensory processing disorder and autism spectrum disorder. Psychophysiology 2008;45.
37.
Zurück zum Zitat Mangeot SD, Miller LJ, McIntosh DN, McGrath-Clarke J, Simon J, Hagerman RJ, et al. Sensory modulation dysfunction in children with attention-deficit–hyperactivity disorder. Dev Med Child Neurol. 2001;43(6):399–406.PubMedCrossRef Mangeot SD, Miller LJ, McIntosh DN, McGrath-Clarke J, Simon J, Hagerman RJ, et al. Sensory modulation dysfunction in children with attention-deficit–hyperactivity disorder. Dev Med Child Neurol. 2001;43(6):399–406.PubMedCrossRef
38.
Zurück zum Zitat Ognibene TC. Distinguishing sensory modulation dysfunction from attention-deficit/hyperactivity disorder: sensory habituation and response inhibition processes. University of Denver; 2002. Ognibene TC. Distinguishing sensory modulation dysfunction from attention-deficit/hyperactivity disorder: sensory habituation and response inhibition processes. University of Denver; 2002.
39.
Zurück zum Zitat Goddard S, Blythe SG, Beuret LJ, Blythe P. Attention, balance, and coordination: the ABC of learning success. Wiley; 2009. Goddard S, Blythe SG, Beuret LJ, Blythe P. Attention, balance, and coordination: the ABC of learning success. Wiley; 2009.
40.
Zurück zum Zitat Marco EJ, Hinkley LBN, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatric Research; 2011. Marco EJ, Hinkley LBN, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatric Research; 2011.
41.
Zurück zum Zitat Bargh JA, Chartrand TL. The unbearable automaticity of being. Social cognition: key readings. 2005;228. Bargh JA, Chartrand TL. The unbearable automaticity of being. Social cognition: key readings. 2005;228.
42.
Zurück zum Zitat Bargh, J. A. The automaticity of everyday life. In: Wyer, RS, editor. The automaticity of everyday life: Advances in social cognition, vol. 10. Mahwah, NJ: Erlbaum Associates; 1997. p. 1-61. Bargh, J. A. The automaticity of everyday life. In: Wyer, RS, editor. The automaticity of everyday life: Advances in social cognition, vol. 10. Mahwah, NJ: Erlbaum Associates; 1997. p. 1-61.
43.
Zurück zum Zitat Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci. 2010;14(4):154–61.PubMedCrossRef Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci. 2010;14(4):154–61.PubMedCrossRef
44.
Zurück zum Zitat Ashby FG, Turner BO, Horvitz JC. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci. 2010;14(5):208–15.PubMedCrossRef Ashby FG, Turner BO, Horvitz JC. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci. 2010;14(5):208–15.PubMedCrossRef
45.
Zurück zum Zitat Toates F. A model of the hierarchy of behaviour, cognition, and consciousness. Conscious Cogn. 2006;15(1):75–118.PubMedCrossRef Toates F. A model of the hierarchy of behaviour, cognition, and consciousness. Conscious Cogn. 2006;15(1):75–118.PubMedCrossRef
47.
Zurück zum Zitat Podell K, Lovell M, Goldberg E. Lateralization of frontal lobe functions. In: Salloway SP, Malloy PF, Duffy JD, editors. The frontal lobes and neuropsychiatric illness. Washington, DC: American Psychiatric; 2001. p. 83–100. Podell K, Lovell M, Goldberg E. Lateralization of frontal lobe functions. In: Salloway SP, Malloy PF, Duffy JD, editors. The frontal lobes and neuropsychiatric illness. Washington, DC: American Psychiatric; 2001. p. 83–100.
48.
Zurück zum Zitat Goldberg E, Bilder RM. The frontal lobes and hierarchical organization of cognitive control. The frontal lobes revisited. 1987;159–87. Goldberg E, Bilder RM. The frontal lobes and hierarchical organization of cognitive control. The frontal lobes revisited. 1987;159–87.
49.
Zurück zum Zitat Goldberg E, Costa LD. Qualitative indices in neuropsychological assessment: an extension of Luria’s approach to executive deficit following prefrontal lesions. Neuropsychological assessment of neuropsychiatric disorders. 1986;48–64. Goldberg E, Costa LD. Qualitative indices in neuropsychological assessment: an extension of Luria’s approach to executive deficit following prefrontal lesions. Neuropsychological assessment of neuropsychiatric disorders. 1986;48–64.
50.
Zurück zum Zitat Kinsbourne M. Development of attention and metacognition. In: Rapin I, Segalowitz SJ, editors. Handbook of neuropsychology, vol. 7. Amsterdam: Elsevier; 1993. p. 261–78. Kinsbourne M. Development of attention and metacognition. In: Rapin I, Segalowitz SJ, editors. Handbook of neuropsychology, vol. 7. Amsterdam: Elsevier; 1993. p. 261–78.
51.
Zurück zum Zitat Marcovitch S, Zelazo PD. A hierarchical competing systems model of the emergence and early development of executive function. Dev Sci. 2009;12(1):1–18.PubMedCrossRef Marcovitch S, Zelazo PD. A hierarchical competing systems model of the emergence and early development of executive function. Dev Sci. 2009;12(1):1–18.PubMedCrossRef
52.
Zurück zum Zitat de Quiros JB, Schrager OL. Neuropsychological fundamentals in learning disabilities. Academic Therapy Publications; 1978. de Quiros JB, Schrager OL. Neuropsychological fundamentals in learning disabilities. Academic Therapy Publications; 1978.
53.
Zurück zum Zitat Piek JP. Infant motor development. Human Kinetics; 2006. Piek JP. Infant motor development. Human Kinetics; 2006.
54.
Zurück zum Zitat Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009–23.PubMedCrossRef Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009–23.PubMedCrossRef
55.
Zurück zum Zitat Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nature Reviews Neuroscience; 2010. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nature Reviews Neuroscience; 2010.
56.
Zurück zum Zitat Reiner A. The conservative evolution of the vertebrate basal ganglia. Handbook of basal ganglia structure and function. 2010;29–62. Reiner A. The conservative evolution of the vertebrate basal ganglia. Handbook of basal ganglia structure and function. 2010;29–62.
57.
Zurück zum Zitat Reiner A. You cannot have a vertebrate brain without a basal ganglia. The basal ganglia IX. 2009;3–24. Reiner A. You cannot have a vertebrate brain without a basal ganglia. The basal ganglia IX. 2009;3–24.
58.
Zurück zum Zitat Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1641–54.PubMedCrossRef Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1641–54.PubMedCrossRef
59.
Zurück zum Zitat Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998;70(1–2):119–36.PubMedCrossRef Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998;70(1–2):119–36.PubMedCrossRef
60.
Zurück zum Zitat Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science. 1994;265(5180):1826.PubMedCrossRef Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science. 1994;265(5180):1826.PubMedCrossRef
61.
Zurück zum Zitat Doyon J, Ungerleider LG. Functional anatomy of motor skill learning. In: Squire LR, editor. Neuropsychology of memory. New York: Guilford; 2002. p. 225–38. Doyon J, Ungerleider LG. Functional anatomy of motor skill learning. In: Squire LR, editor. Neuropsychology of memory. New York: Guilford; 2002. p. 225–38.
62.
Zurück zum Zitat Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol. 2010;90(4):385–417.PubMedCrossRef Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol. 2010;90(4):385–417.PubMedCrossRef
63.
Zurück zum Zitat Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRef Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRef
64.
Zurück zum Zitat Knowlton BJ. The role of the basal ganglia in learning and memory. In: Squire LR, Schacter DL, editors. The neuropsychology of memory. 3rd ed. New York: Guilford; 2002. p. 143–53. Knowlton BJ. The role of the basal ganglia in learning and memory. In: Squire LR, Schacter DL, editors. The neuropsychology of memory. 3rd ed. New York: Guilford; 2002. p. 143–53.
65.
Zurück zum Zitat Corbit LH, Janak PH. Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci. 2010;31(7):1312–21.PubMedCrossRef Corbit LH, Janak PH. Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci. 2010;31(7):1312–21.PubMedCrossRef
66.
Zurück zum Zitat Schwartze M, Keller PE, Patel AD, Kotz SA. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res. 2011;216(2):685–91.PubMedCrossRef Schwartze M, Keller PE, Patel AD, Kotz SA. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behav Brain Res. 2011;216(2):685–91.PubMedCrossRef
67.
Zurück zum Zitat Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.CrossRef Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.CrossRef
68.
Zurück zum Zitat Schwabe L, Wolf OT. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behavioural Brain Research; 2010 (in press). Schwabe L, Wolf OT. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behavioural Brain Research; 2010 (in press).
69.
Zurück zum Zitat Fuster JM. The prefrontal cortex. Academic; 2008. Fuster JM. The prefrontal cortex. Academic; 2008.
70.
Zurück zum Zitat Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedCrossRef Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedCrossRef
71.
Zurück zum Zitat Middleton FA, Strick PL. A revised neuroanatomy of frontal–subcortical circuits. Frontal–subcortical circuits in psychiatric and neurological disorders. 2001;44–58. Middleton FA, Strick PL. A revised neuroanatomy of frontal–subcortical circuits. Frontal–subcortical circuits in psychiatric and neurological disorders. 2001;44–58.
72.
Zurück zum Zitat Seger CA, Miller EK. Category learning in the brain. Annual Review of Neuroscience. 2010;33(1). Seger CA, Miller EK. Category learning in the brain. Annual Review of Neuroscience. 2010;33(1).
73.
Zurück zum Zitat Bonelli RM, Cummings JL. Frontal–subcortical circuitry and behavior. Dialogues Clin Neurosci. 2007;9(2):141.PubMed Bonelli RM, Cummings JL. Frontal–subcortical circuitry and behavior. Dialogues Clin Neurosci. 2007;9(2):141.PubMed
74.
Zurück zum Zitat Cummings JL. Anatomic and behavioral aspects of frontal–subcortical circuits. Ann NY Acad Sci. 1995;769(1):1–13.PubMedCrossRef Cummings JL. Anatomic and behavioral aspects of frontal–subcortical circuits. Ann NY Acad Sci. 1995;769(1):1–13.PubMedCrossRef
75.
Zurück zum Zitat Lichter DG, Cummings JL. Frontal–subcortical circuits in psychiatric and neurological disorders. Guilford; 2001. Lichter DG, Cummings JL. Frontal–subcortical circuits in psychiatric and neurological disorders. Guilford; 2001.
76.
Zurück zum Zitat Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26.PubMedCrossRef Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26.PubMedCrossRef
77.
Zurück zum Zitat Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166(6):664–74.PubMedCrossRef Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166(6):664–74.PubMedCrossRef
78.
Zurück zum Zitat Smeets WJ, Marin O, Gonzalez A. Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat. 2000;196:501–17.PubMedCrossRef Smeets WJ, Marin O, Gonzalez A. Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat. 2000;196:501–17.PubMedCrossRef
79.
Zurück zum Zitat Striedter GF. Principles of brain evolution. New York: Sinauer; 2005. Striedter GF. Principles of brain evolution. New York: Sinauer; 2005.
80.
Zurück zum Zitat Erbetta A. Basal ganglia and thalamus: connections and functions. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 11–6. Erbetta A. Basal ganglia and thalamus: connections and functions. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 11–6.
81.
Zurück zum Zitat McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P. Subcortical loops through the basal ganglia. Trends Neurosci. 2005;28(8):401–7.PubMedCrossRef McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P. Subcortical loops through the basal ganglia. Trends Neurosci. 2005;28(8):401–7.PubMedCrossRef
82.
Zurück zum Zitat Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008. Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008.
83.
Zurück zum Zitat Redgrave P, Coizet V, Comoli E, McHaffie JG, Leriche M, Vautrelle N, et al. Interactions between the midbrain superior colliculus and the basal ganglia. Frontiers in Neuroanatomy. 2010;4. Redgrave P, Coizet V, Comoli E, McHaffie JG, Leriche M, Vautrelle N, et al. Interactions between the midbrain superior colliculus and the basal ganglia. Frontiers in Neuroanatomy. 2010;4.
84.
Zurück zum Zitat Winn P, Wilson DIG, Redgrave P. Subcortical connections of the basal ganglia. Handbook Of Behavioral Neuroscience. 2010;20:397–408.CrossRef Winn P, Wilson DIG, Redgrave P. Subcortical connections of the basal ganglia. Handbook Of Behavioral Neuroscience. 2010;20:397–408.CrossRef
85.
Zurück zum Zitat Desrochers TM, Jin DZ, Goodman ND, Graybiel AM. Optimal habits can develop spontaneously through sensitivity to local cost. Proc Natl Acad Sci. 2010;107(47):20512–7.PubMedCrossRef Desrochers TM, Jin DZ, Goodman ND, Graybiel AM. Optimal habits can develop spontaneously through sensitivity to local cost. Proc Natl Acad Sci. 2010;107(47):20512–7.PubMedCrossRef
86.
Zurück zum Zitat Wilson DIG, MacLaren DAA, Winn P. On the relationships between the pedunculopontine tegmental nucleus, corticostriatal architecture, and the medial reticular formation. The basal ganglia IX. 2009;143. Wilson DIG, MacLaren DAA, Winn P. On the relationships between the pedunculopontine tegmental nucleus, corticostriatal architecture, and the medial reticular formation. The basal ganglia IX. 2009;143.
87.
Zurück zum Zitat Sarvestani IK, Lindahl M, Hellgren-Kotaleski J, Ekeberg +. The arbitration–extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia. Frontiers in Systems Neuroscience. 2011;5. Sarvestani IK, Lindahl M, Hellgren-Kotaleski J, Ekeberg +. The arbitration–extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia. Frontiers in Systems Neuroscience. 2011;5.
88.
Zurück zum Zitat Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef
89.
Zurück zum Zitat Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences. 2010. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences. 2010.
90.
Zurück zum Zitat Durston S, Belle JV, Zeeuw PD. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 2010. Durston S, Belle JV, Zeeuw PD. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 2010.
91.
Zurück zum Zitat Mendoza J, Foundas AL. Clinical neuroanatomy: a neurobehavioral approach. Springer; 2007. Mendoza J, Foundas AL. Clinical neuroanatomy: a neurobehavioral approach. Springer; 2007.
92.
93.
Zurück zum Zitat Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedCrossRef Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedCrossRef
94.
Zurück zum Zitat Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedCrossRef Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedCrossRef
95.
Zurück zum Zitat Schmahmann JD. The cerebellum and cognition. Academic; 1997. Schmahmann JD. The cerebellum and cognition. Academic; 1997.
96.
97.
Zurück zum Zitat Cerminara NL, Apps R. Behavioural significance of cerebellar modules. The Cerebellum 2010;1–11. Cerminara NL, Apps R. Behavioural significance of cerebellar modules. The Cerebellum 2010;1–11.
98.
Zurück zum Zitat Ghelarducci B. The cerebellum as a multipurpose neural machine: basic principles and future perspectives. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: Libbey Eurotext; 2010. p. 111–32. Ghelarducci B. The cerebellum as a multipurpose neural machine: basic principles and future perspectives. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: Libbey Eurotext; 2010. p. 111–32.
99.
100.
Zurück zum Zitat Manto M, Nowak DA, Schutter DJ. Coupling between cerebellar hemispheres and sensory processing. Cerebellum. 2006;5(3):187–8.PubMedCrossRef Manto M, Nowak DA, Schutter DJ. Coupling between cerebellar hemispheres and sensory processing. Cerebellum. 2006;5(3):187–8.PubMedCrossRef
101.
Zurück zum Zitat Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedCrossRef Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedCrossRef
102.
Zurück zum Zitat Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol. 1990;302(4):768–78.PubMedCrossRef Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol. 1990;302(4):768–78.PubMedCrossRef
103.
Zurück zum Zitat Montgomery J, Bodznick D. Functional origins of the vertebrate cerebellum from a sensory processing antecedent. Curr Zool Current Zoology. 2010;56(3):277–84. Montgomery J, Bodznick D. Functional origins of the vertebrate cerebellum from a sensory processing antecedent. Curr Zool Current Zoology. 2010;56(3):277–84.
104.
Zurück zum Zitat Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31(6):2305–12.PubMedCrossRef Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31(6):2305–12.PubMedCrossRef
105.
Zurück zum Zitat Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12. Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12.
106.
Zurück zum Zitat Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.PubMedCrossRef Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.PubMedCrossRef
107.
Zurück zum Zitat Akshoomoff NA, Courchesne E, Townsend J. Attention coordination and anticipatory control. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 575–600. Akshoomoff NA, Courchesne E, Townsend J. Attention coordination and anticipatory control. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 575–600.
108.
109.
Zurück zum Zitat Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRef Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRef
110.
Zurück zum Zitat Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedCrossRef Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedCrossRef
112.
Zurück zum Zitat Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28(4):469–78.PubMedCrossRef Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28(4):469–78.PubMedCrossRef
113.
Zurück zum Zitat Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev. 2006;52(1):93–106.PubMedCrossRef Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev. 2006;52(1):93–106.PubMedCrossRef
114.
Zurück zum Zitat Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry. 2001;13(4):247–60.CrossRef Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry. 2001;13(4):247–60.CrossRef
115.
Zurück zum Zitat Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129(Pt 2):290–2.PubMed Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129(Pt 2):290–2.PubMed
116.
Zurück zum Zitat Leiner HC, Leiner AL. How fibers subserve computing capabilities: similarities between brains and machines. Int Rev Neurobiol. 1997;41:535–53.PubMedCrossRef Leiner HC, Leiner AL. How fibers subserve computing capabilities: similarities between brains and machines. Int Rev Neurobiol. 1997;41:535–53.PubMedCrossRef
117.
Zurück zum Zitat Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef
118.
Zurück zum Zitat Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef
119.
Zurück zum Zitat Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef
120.
Zurück zum Zitat Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex 2010. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex 2010.
121.
Zurück zum Zitat Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedCrossRef Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedCrossRef
122.
Zurück zum Zitat Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl. 2008;188:6–11.PubMedCrossRef Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl. 2008;188:6–11.PubMedCrossRef
123.
124.
Zurück zum Zitat Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9(1):56–66.PubMedCrossRef Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9(1):56–66.PubMedCrossRef
125.
Zurück zum Zitat Manto M, Oulad Ben Taib N. Cerebellar nuclei: key roles for strategically located structures. Cerebellum. 2010;9(1):17–21.PubMedCrossRef Manto M, Oulad Ben Taib N. Cerebellar nuclei: key roles for strategically located structures. Cerebellum. 2010;9(1):17–21.PubMedCrossRef
126.
Zurück zum Zitat Ramnani N. The primate cortico–cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedCrossRef Ramnani N. The primate cortico–cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedCrossRef
127.
Zurück zum Zitat Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist. 2000;13(2–3):189–214.CrossRef Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist. 2000;13(2–3):189–214.CrossRef
128.
Zurück zum Zitat Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. 2010;46(7):907–18.PubMedCrossRef Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. 2010;46(7):907–18.PubMedCrossRef
129.
Zurück zum Zitat Galliano E, Mazzarello P, D’Angelo E. Discovery and rediscoveries of Golgi cells. J Physiol. 2010;588(Pt 19):3639–55.PubMedCrossRef Galliano E, Mazzarello P, D’Angelo E. Discovery and rediscoveries of Golgi cells. J Physiol. 2010;588(Pt 19):3639–55.PubMedCrossRef
130.
Zurück zum Zitat D′Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2010; Oct 13. D′Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2010; Oct 13.
131.
Zurück zum Zitat Houk JC, Mugnaini E. Cerebellum. Fundamental neuroscience. Amsterdam: Elsevier; 2003. p. 841–72. Houk JC, Mugnaini E. Cerebellum. Fundamental neuroscience. Amsterdam: Elsevier; 2003. p. 841–72.
132.
Zurück zum Zitat Ausim Azizi S. And the olive said to the cerebellum: organization and functional significance of the olivo-cerebellar system. Neuroscientist. 2007;13(6):616–25.PubMedCrossRef Ausim Azizi S. And the olive said to the cerebellum: organization and functional significance of the olivo-cerebellar system. Neuroscientist. 2007;13(6):616–25.PubMedCrossRef
133.
Zurück zum Zitat Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, DÆArrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. Biotechnologies vqgqtales: Numqro spqcial Cahiers Agricultures 2010;133. Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, DÆArrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. Biotechnologies vqgqtales: Numqro spqcial Cahiers Agricultures 2010;133.
134.
Zurück zum Zitat Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE. 2009;4(4):e5101.PubMedCrossRef Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE. 2009;4(4):e5101.PubMedCrossRef
135.
Zurück zum Zitat Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum 2009 Jun 10. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum 2009 Jun 10.
136.
Zurück zum Zitat Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Frontiers in Neuroscience 2010;4. Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Frontiers in Neuroscience 2010;4.
137.
Zurück zum Zitat Mayor-Dubois C, Maeder P, Zesiger P, Roulet-Perez E. Visuo-motor and cognitive procedural learning in children with basal ganglia pathology. Neuropsychologia. 2010;48(7):2009–17.PubMedCrossRef Mayor-Dubois C, Maeder P, Zesiger P, Roulet-Perez E. Visuo-motor and cognitive procedural learning in children with basal ganglia pathology. Neuropsychologia. 2010;48(7):2009–17.PubMedCrossRef
138.
Zurück zum Zitat Denckla MB, Reiss AL. Prefrontal–subcortical circuits in developmental disorders. In: Krasnegor NA, Lyon GR, Goldman-Rakic PS, editors. Development of the prefrontal cortex: evolution, neurobiology, and behavior. Baltimore: Brookes; 1997. p. 283–94. Denckla MB, Reiss AL. Prefrontal–subcortical circuits in developmental disorders. In: Krasnegor NA, Lyon GR, Goldman-Rakic PS, editors. Development of the prefrontal cortex: evolution, neurobiology, and behavior. Baltimore: Brookes; 1997. p. 283–94.
139.
Zurück zum Zitat Samango-Sprouse C. Frontal lobe development in childhood. The human frontal lobes: functions and disorders. 2007;576–93. Samango-Sprouse C. Frontal lobe development in childhood. The human frontal lobes: functions and disorders. 2007;576–93.
140.
Zurück zum Zitat Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14(2):154–62.PubMedCrossRef Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14(2):154–62.PubMedCrossRef
141.
Zurück zum Zitat Heilman KM, Valenstein E, Rothi LJG, Watson RT. Upper limb action—intentional and cognitive–apraxic motor disorders. Neurology in clinical practice. 5th ed. Philadelphia, PA: Elsevier; 2008. p. 121–32. Heilman KM, Valenstein E, Rothi LJG, Watson RT. Upper limb action—intentional and cognitive–apraxic motor disorders. Neurology in clinical practice. 5th ed. Philadelphia, PA: Elsevier; 2008. p. 121–32.
142.
Zurück zum Zitat Heilman KM, Voeller KKS, Nadeau SE. A possible pathophysiologic substrate of attention deficit hyperactivity disorder. J Child Neurol. 1991;6(1 suppl):S76.PubMed Heilman KM, Voeller KKS, Nadeau SE. A possible pathophysiologic substrate of attention deficit hyperactivity disorder. J Child Neurol. 1991;6(1 suppl):S76.PubMed
143.
Zurück zum Zitat Yin HH. The sensorimotor striatum is necessary for serial order learning. J Neurosci. 2010;30(44):14719–23.PubMedCrossRef Yin HH. The sensorimotor striatum is necessary for serial order learning. J Neurosci. 2010;30(44):14719–23.PubMedCrossRef
144.
Zurück zum Zitat Middleton FA. Fundamental and clinical evidence for basal ganglia influences on cognition. Mental and behavioral dysfunction in movement disorders. 2003;13–33. Middleton FA. Fundamental and clinical evidence for basal ganglia influences on cognition. Mental and behavioral dysfunction in movement disorders. 2003;13–33.
145.
Zurück zum Zitat Morton JB, Munakata Y. Active versus latent representations: a neural network model of perseveration, dissociation, and decalage. Dev Psychobiol. 2002;40(3):255–65.PubMedCrossRef Morton JB, Munakata Y. Active versus latent representations: a neural network model of perseveration, dissociation, and decalage. Dev Psychobiol. 2002;40(3):255–65.PubMedCrossRef
146.
Zurück zum Zitat Chatham CH, Frank MJ, Munakata Y. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc Natl Acad Sci. 2009;106(14):5529.PubMedCrossRef Chatham CH, Frank MJ, Munakata Y. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc Natl Acad Sci. 2009;106(14):5529.PubMedCrossRef
147.
Zurück zum Zitat Lhermitte F, Pillon B, Serdaru M. Human autonomy and the frontal lobes. Part I: imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol. 1986;19(4):326–34.PubMedCrossRef Lhermitte F, Pillon B, Serdaru M. Human autonomy and the frontal lobes. Part I: imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol. 1986;19(4):326–34.PubMedCrossRef
148.
Zurück zum Zitat Dehn M. Working memory and academy learning. Assessment and intervention. New Jersey: Wiley; 2008. Dehn M. Working memory and academy learning. Assessment and intervention. New Jersey: Wiley; 2008.
149.
Zurück zum Zitat Logie RH, Engelkamp J, Dehn D, Rudkin S. Actions, mental actions, and working memory. Imagery, language and visuo-spatial thinking. 2001;161–83. Logie RH, Engelkamp J, Dehn D, Rudkin S. Actions, mental actions, and working memory. Imagery, language and visuo-spatial thinking. 2001;161–83.
150.
Zurück zum Zitat Davidson MC, Amso D, Anderson LC, Diamond A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia. 2006;44(11):2037–78.PubMedCrossRef Davidson MC, Amso D, Anderson LC, Diamond A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia. 2006;44(11):2037–78.PubMedCrossRef
151.
Zurück zum Zitat Diamond A. The early development of executive functions. Lifespan cognition: mechanisms of change. 2006;70–95. Diamond A. The early development of executive functions. Lifespan cognition: mechanisms of change. 2006;70–95.
152.
Zurück zum Zitat Finn AS, Sheridan MA, Kam CLH, Hinshaw S, D’Esposito M. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci. 2010;30(33):11062.PubMedCrossRef Finn AS, Sheridan MA, Kam CLH, Hinshaw S, D’Esposito M. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci. 2010;30(33):11062.PubMedCrossRef
153.
Zurück zum Zitat Munakata Y. Computational cognitive neuroscience of early memory development. Dev Rev. 2004;24(1):133–53.CrossRef Munakata Y. Computational cognitive neuroscience of early memory development. Dev Rev. 2004;24(1):133–53.CrossRef
154.
155.
Zurück zum Zitat Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998;18(21):8990–9001.PubMed Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998;18(21):8990–9001.PubMed
156.
Zurück zum Zitat Zatorre RJ, Jones-Gotman M, Rouby C. Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport. 2000;11(12):2711–6.PubMedCrossRef Zatorre RJ, Jones-Gotman M, Rouby C. Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport. 2000;11(12):2711–6.PubMedCrossRef
157.
Zurück zum Zitat Parsons LM, Fox PT. Sensory and cognitive functions. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 255–72. Parsons LM, Fox PT. Sensory and cognitive functions. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 255–72.
158.
Zurück zum Zitat Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.PubMedCrossRef Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.PubMedCrossRef
159.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRef
160.
Zurück zum Zitat Imazu S, Sugio T, Tanaka S, Inui T. Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex. 2007;43(3):301–7.PubMedCrossRef Imazu S, Sugio T, Tanaka S, Inui T. Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex. 2007;43(3):301–7.PubMedCrossRef
161.
Zurück zum Zitat Hirano T, Watanabe D, Kawaguchi SY, Pastan I, Nakanishi S. Roles of inhibitory interneurons in the cerebellar cortex. Ann NY Acad Sci. 2002;978:405–12.PubMedCrossRef Hirano T, Watanabe D, Kawaguchi SY, Pastan I, Nakanishi S. Roles of inhibitory interneurons in the cerebellar cortex. Ann NY Acad Sci. 2002;978:405–12.PubMedCrossRef
162.
Zurück zum Zitat Jorntell H, Bengtsson F, Schonewille M, De Zeeuw CI. Cerebellar molecular layer interneurons—computational properties and roles in learning. Trends Neurosci. 2010;33(11):524–32.PubMedCrossRef Jorntell H, Bengtsson F, Schonewille M, De Zeeuw CI. Cerebellar molecular layer interneurons—computational properties and roles in learning. Trends Neurosci. 2010;33(11):524–32.PubMedCrossRef
163.
Zurück zum Zitat Oldfield CS, Marty A, Stell BM. Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states. Proc Natl Acad Sci USA. 2010;107(29):13153–8.PubMedCrossRef Oldfield CS, Marty A, Stell BM. Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states. Proc Natl Acad Sci USA. 2010;107(29):13153–8.PubMedCrossRef
164.
Zurück zum Zitat Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef
165.
Zurück zum Zitat Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedCrossRef Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedCrossRef
166.
Zurück zum Zitat Rosinski A, Goldman M, Cameron O. A case of cerebellar psychopathology. Psychosomatics. 2010;51(2):171.PubMedCrossRef Rosinski A, Goldman M, Cameron O. A case of cerebellar psychopathology. Psychosomatics. 2010;51(2):171.PubMedCrossRef
167.
Zurück zum Zitat Emul M, Yilmaz I, Asik A, Oruc S, Ilgaz K, Guler O. Co-occurrence of psychiatric symptoms with cerebellar venous malformation: a case report. J Neuropsychiatry Clin Neurosci. 2010;22(4):451-d.PubMedCrossRef Emul M, Yilmaz I, Asik A, Oruc S, Ilgaz K, Guler O. Co-occurrence of psychiatric symptoms with cerebellar venous malformation: a case report. J Neuropsychiatry Clin Neurosci. 2010;22(4):451-d.PubMedCrossRef
168.
Zurück zum Zitat Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.PubMedCrossRef Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.PubMedCrossRef
169.
Zurück zum Zitat Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19(8):1120–36.PubMedCrossRef Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19(8):1120–36.PubMedCrossRef
170.
Zurück zum Zitat Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318(5854):1309–12.PubMedCrossRef Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318(5854):1309–12.PubMedCrossRef
171.
Zurück zum Zitat Dunn W. Sensory profile caregiver questionnaire. San Antonio, TX: Psychological Corporation; 1999. Dunn W. Sensory profile caregiver questionnaire. San Antonio, TX: Psychological Corporation; 1999.
172.
Zurück zum Zitat Raab M, Johnson JG, Heekeren HR. Mind and motion: the bidirectional link between thought and action. Amsterdam: Elsevier; 2009. Raab M, Johnson JG, Heekeren HR. Mind and motion: the bidirectional link between thought and action. Amsterdam: Elsevier; 2009.
173.
Zurück zum Zitat Dewey J. The reflex arc in psychology. Psychol Rev. 1896;3(1896):357–70.CrossRef Dewey J. The reflex arc in psychology. Psychol Rev. 1896;3(1896):357–70.CrossRef
174.
Zurück zum Zitat Nip ISB, Green JR, Marx DB. The coemergence of cognition, language, and speech motor control in early development: a longitudinal correlation study. Journal of Communication Disorders 2010. Nip ISB, Green JR, Marx DB. The coemergence of cognition, language, and speech motor control in early development: a longitudinal correlation study. Journal of Communication Disorders 2010.
175.
Zurück zum Zitat Iverson JM. Developing language in a developing body: the relationship between motor development and language development. J Child Lang. 2010;37(02):229–61.PubMedCrossRef Iverson JM. Developing language in a developing body: the relationship between motor development and language development. J Child Lang. 2010;37(02):229–61.PubMedCrossRef
176.
Zurück zum Zitat Creem-Regehr SH. Sensory–motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiol Learn Mem. 2009;91(2):166–71.PubMedCrossRef Creem-Regehr SH. Sensory–motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiol Learn Mem. 2009;91(2):166–71.PubMedCrossRef
177.
Zurück zum Zitat Meredith MA, Clemo HR. Corticocortical connectivity subserving different forms of multisensory convergence. In: Kaiser J, Naumer MJ, editors. Multisensory object perception in the primate brain. New York: Springer; 2010. p. 7–20.CrossRef Meredith MA, Clemo HR. Corticocortical connectivity subserving different forms of multisensory convergence. In: Kaiser J, Naumer MJ, editors. Multisensory object perception in the primate brain. New York: Springer; 2010. p. 7–20.CrossRef
178.
Zurück zum Zitat Kolb B, Whishaw IQ. Fundamentals of human neuropsychology. New York: Worth; 2008. Kolb B, Whishaw IQ. Fundamentals of human neuropsychology. New York: Worth; 2008.
179.
Zurück zum Zitat Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35. Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35.
180.
Zurück zum Zitat Gowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum. 2007;6(3):268–79.PubMedCrossRef Gowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum. 2007;6(3):268–79.PubMedCrossRef
181.
Zurück zum Zitat Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci. 2009;29(5):1538–43.PubMedCrossRef Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci. 2009;29(5):1538–43.PubMedCrossRef
182.
Zurück zum Zitat Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. The Cerebellum 2010;1–19. Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. The Cerebellum 2010;1–19.
183.
Zurück zum Zitat Davis EE, Pitchford NJ, Limback E. The interrelation between cognitive and motor development in typically developing children aged 4–11 years is underpinned by visual processing and fine manual control. British Journal of Psychology 2011. Davis EE, Pitchford NJ, Limback E. The interrelation between cognitive and motor development in typically developing children aged 4–11 years is underpinned by visual processing and fine manual control. British Journal of Psychology 2011.
184.
Zurück zum Zitat Haber SN. Integrative networks across basal ganglia circuits. Handbook Of Behavioral Neuroscience. 2010;20:409–28.CrossRef Haber SN. Integrative networks across basal ganglia circuits. Handbook Of Behavioral Neuroscience. 2010;20:409–28.CrossRef
185.
Zurück zum Zitat Yin HH, Ostlund SB, Balleine BW. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci. 2008;28(8):1437–48.PubMedCrossRef Yin HH, Ostlund SB, Balleine BW. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci. 2008;28(8):1437–48.PubMedCrossRef
186.
Zurück zum Zitat Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.PubMedCrossRef Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.PubMedCrossRef
187.
Zurück zum Zitat Jog M, Aur D. A theoretical information processing-based approach to basal ganglia function. The basal ganglia IX. 2009;211–22. Jog M, Aur D. A theoretical information processing-based approach to basal ganglia function. The basal ganglia IX. 2009;211–22.
188.
Zurück zum Zitat Aarts E, Roelofs A, Franke B, Rijpkema M, Fernandez G, Helmich RC, et al. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology. 2010;35(9):1943–51.PubMedCrossRef Aarts E, Roelofs A, Franke B, Rijpkema M, Fernandez G, Helmich RC, et al. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology. 2010;35(9):1943–51.PubMedCrossRef
189.
Zurück zum Zitat Beck SM, Locke HS, Savine AC, Jimura K, Braver TS. Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS ONE. 2010;5(2):e9251.PubMedCrossRef Beck SM, Locke HS, Savine AC, Jimura K, Braver TS. Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS ONE. 2010;5(2):e9251.PubMedCrossRef
190.
Zurück zum Zitat Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res. 2010;3(2):53–67.PubMed Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res. 2010;3(2):53–67.PubMed
191.
Zurück zum Zitat Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS, et al. The cerebellar nodulus/uvula integrates otolith signals for the translational vestibulo-ocular reflex. PLoS ONE. 2010;5(11):e13981.PubMedCrossRef Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS, et al. The cerebellar nodulus/uvula integrates otolith signals for the translational vestibulo-ocular reflex. PLoS ONE. 2010;5(11):e13981.PubMedCrossRef
192.
Zurück zum Zitat Blatt GJ, Soghomonian JJ, Yip J. Glutamic acid decarboxylase (GAD) as a biomarker of GABAergic activity in autism: impact on cerebellar circuitry and function. The Neurochemical Basis of Autism 2010;95–111. Blatt GJ, Soghomonian JJ, Yip J. Glutamic acid decarboxylase (GAD) as a biomarker of GABAergic activity in autism: impact on cerebellar circuitry and function. The Neurochemical Basis of Autism 2010;95–111.
193.
Zurück zum Zitat Su CT, Wu MY, Yang AL, Chen-Sea MJ, Hwang IS. Impairment of stance control in children with sensory modulation disorder. Am J Occup Ther. 2010;64(3):443.PubMedCrossRef Su CT, Wu MY, Yang AL, Chen-Sea MJ, Hwang IS. Impairment of stance control in children with sensory modulation disorder. Am J Occup Ther. 2010;64(3):443.PubMedCrossRef
194.
Zurück zum Zitat Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent III TF, et al. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.PubMedCrossRef Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent III TF, et al. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.PubMedCrossRef
195.
Zurück zum Zitat Fawcett AJ, Nicolson RI. Dyslexia, learning, and pedagogical neuroscience. Dev Med Child Neurol. 2007;49(4):306–11.PubMedCrossRef Fawcett AJ, Nicolson RI. Dyslexia, learning, and pedagogical neuroscience. Dev Med Child Neurol. 2007;49(4):306–11.PubMedCrossRef
196.
Zurück zum Zitat Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Impaired balancing ability in dyslexic children. Exp Brain Res. 2005;167(3):370–80.PubMedCrossRef Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Impaired balancing ability in dyslexic children. Exp Brain Res. 2005;167(3):370–80.PubMedCrossRef
197.
Zurück zum Zitat Nicolson RI, Fawcett AJ, Brookes RL, Needle J. Procedural learning and dyslexia. Dyslexia. 2010;16(3):194–212.PubMedCrossRef Nicolson RI, Fawcett AJ, Brookes RL, Needle J. Procedural learning and dyslexia. Dyslexia. 2010;16(3):194–212.PubMedCrossRef
198.
Zurück zum Zitat Lonnemann J. Relations between balancing and arithmetic skills in children—evidence of cerebellar involvement? Journal of Neurolinguistics 2011. Lonnemann J. Relations between balancing and arithmetic skills in children—evidence of cerebellar involvement? Journal of Neurolinguistics 2011.
199.
Zurück zum Zitat Haruno M, Wolpert DM, Kawato M. Multiple paired forward-inverse models for human motor learning and control. Advances in Neural Information Processing Systems 1999;31–7. Haruno M, Wolpert DM, Kawato M. Multiple paired forward-inverse models for human motor learning and control. Advances in Neural Information Processing Systems 1999;31–7.
200.
Zurück zum Zitat Denckla MB. Measurement of executive function. In: Lyon GR, editor. Frames of reference for the assessment of learning disabilities: new views on measurement issues. Baltimore: Brookes; 1994. p. 117–42. Denckla MB. Measurement of executive function. In: Lyon GR, editor. Frames of reference for the assessment of learning disabilities: new views on measurement issues. Baltimore: Brookes; 1994. p. 117–42.
201.
Zurück zum Zitat Butz M, Timmermann L, Gross J, Pollok B, Dirks M, Hefter H, et al. Oscillatory coupling in writing and writer’s cramp. J Physiol Paris. 2006;99(1):14–20.PubMedCrossRef Butz M, Timmermann L, Gross J, Pollok B, Dirks M, Hefter H, et al. Oscillatory coupling in writing and writer’s cramp. J Physiol Paris. 2006;99(1):14–20.PubMedCrossRef
202.
Zurück zum Zitat Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95(2):1194.PubMedCrossRef Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95(2):1194.PubMedCrossRef
203.
Zurück zum Zitat Taub AH, Mintz M. Amygdala conditioning modulates sensory input to the cerebellum. Neurobiology of Learning and Memory 2010. Taub AH, Mintz M. Amygdala conditioning modulates sensory input to the cerebellum. Neurobiology of Learning and Memory 2010.
204.
Zurück zum Zitat Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. The Cerebellum 2010;1–31. Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. The Cerebellum 2010;1–31.
205.
Zurück zum Zitat Ansari D. Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: the perils of neglecting the role of development. Learning and Individual Differences 2009. Ansari D. Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: the perils of neglecting the role of development. Learning and Individual Differences 2009.
206.
Zurück zum Zitat Lebel C, Rasmussen C, Wyper K, Andrew G, Beaulieu C. Brain microstructure is related to math ability in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2010;34(2):354–63.PubMedCrossRef Lebel C, Rasmussen C, Wyper K, Andrew G, Beaulieu C. Brain microstructure is related to math ability in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2010;34(2):354–63.PubMedCrossRef
207.
Zurück zum Zitat Geary DC. Mathematical disabilities: reflections on cognitive, neuropsychological, and genetic components. Learn Individ Differ. 2010;20(2):130–3.PubMedCrossRef Geary DC. Mathematical disabilities: reflections on cognitive, neuropsychological, and genetic components. Learn Individ Differ. 2010;20(2):130–3.PubMedCrossRef
208.
Zurück zum Zitat Gabriel A, Maillart C, Guillaume M, Meulemans T. Is there a generalized procedural deficit in children with specific language impairment? 6th International Conference on Language Acquisition (CIAL); Barcelona 2010. Gabriel A, Maillart C, Guillaume M, Meulemans T. Is there a generalized procedural deficit in children with specific language impairment? 6th International Conference on Language Acquisition (CIAL); Barcelona 2010.
209.
Zurück zum Zitat Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico–striatal and cortico–cerebellar systems to motor skill learning. Neuropsychologia. 2003;41(3):252–62.PubMedCrossRef Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico–striatal and cortico–cerebellar systems to motor skill learning. Neuropsychologia. 2003;41(3):252–62.PubMedCrossRef
210.
Zurück zum Zitat Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.PubMedCrossRef Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.PubMedCrossRef
211.
Zurück zum Zitat Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):e678.PubMedCrossRef Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):e678.PubMedCrossRef
212.
Zurück zum Zitat Gillig PM, Sanders RD. Psychiatry, neurology, and the role of the cerebellum. Psychiatry (Edgmont (Pa: Township)). 2010;7(9):38–43. Gillig PM, Sanders RD. Psychiatry, neurology, and the role of the cerebellum. Psychiatry (Edgmont (Pa: Township)). 2010;7(9):38–43.
213.
Zurück zum Zitat Ahlfors CE. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr Opin Pediatr. 2010;22(2):129.PubMedCrossRef Ahlfors CE. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr Opin Pediatr. 2010;22(2):129.PubMedCrossRef
214.
Zurück zum Zitat Amin SB, Prinzing D, Myers G. Hyperbilirubinemia and language delay in premature infants. Pediatrics. 2009;123(1):327–31.PubMedCrossRef Amin SB, Prinzing D, Myers G. Hyperbilirubinemia and language delay in premature infants. Pediatrics. 2009;123(1):327–31.PubMedCrossRef
215.
Zurück zum Zitat Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol. 2004;25(1):54–9.CrossRef Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol. 2004;25(1):54–9.CrossRef
216.
Zurück zum Zitat Borsook D, Upadhyay J, Chudler EH, Becerra L. Review A key role of the basal ganglia in pain and analgesia—insights gained through human functional imaging. Mol Pain 2010;6(27):doi:10.1186/1744-8069-6-27. Borsook D, Upadhyay J, Chudler EH, Becerra L. Review A key role of the basal ganglia in pain and analgesia—insights gained through human functional imaging. Mol Pain 2010;6(27):doi:10.​1186/​1744-8069-6-27.
217.
Zurück zum Zitat Adams-Chapman I. Insults to the developing brain and impact on neurodevelopmental outcome. J Commun Disord. 2009;42(4):256–62.PubMedCrossRef Adams-Chapman I. Insults to the developing brain and impact on neurodevelopmental outcome. J Commun Disord. 2009;42(4):256–62.PubMedCrossRef
218.
Zurück zum Zitat Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38(2 Suppl):724–30.PubMedCrossRef Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38(2 Suppl):724–30.PubMedCrossRef
219.
Zurück zum Zitat Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef
220.
221.
Zurück zum Zitat Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.PubMedCrossRef Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.PubMedCrossRef
222.
Zurück zum Zitat Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol. 2005;20(2):139–42.PubMedCrossRef Bodensteiner JB, Johnsen SD. Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol. 2005;20(2):139–42.PubMedCrossRef
223.
Zurück zum Zitat Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131(Pt 5):1344–51.PubMed Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131(Pt 5):1344–51.PubMed
224.
Zurück zum Zitat Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.PubMedCrossRef Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.PubMedCrossRef
225.
Zurück zum Zitat Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.PubMed Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.PubMed
226.
Zurück zum Zitat Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49(1):63–70.PubMedCrossRef Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49(1):63–70.PubMedCrossRef
227.
Zurück zum Zitat Weindling M. Insights into early brain development from modern brain imaging and outcome studies. Acta Pμdiatrica. 2010;99(7):961–6.CrossRef Weindling M. Insights into early brain development from modern brain imaging and outcome studies. Acta Pμdiatrica. 2010;99(7):961–6.CrossRef
228.
Zurück zum Zitat Chu-Shore CJ, Kramer MA, Bianchi MT, Caviness VS, Cash SS. Network analysis: applications for the developing brain. Journal of Child Neurology 2011. Chu-Shore CJ, Kramer MA, Bianchi MT, Caviness VS, Cash SS. Network analysis: applications for the developing brain. Journal of Child Neurology 2011.
Metadaten
Titel
Sensory Integration, Sensory Processing, and Sensory Modulation Disorders: Putative Functional Neuroanatomic Underpinnings
verfasst von
Leonard F. Koziol
Deborah Ely Budding
Dana Chidekel
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 4/2011
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0288-8

Weitere Artikel der Ausgabe 4/2011

The Cerebellum 4/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.