Skip to main content
Erschienen in: Journal of Digital Imaging 6/2012

01.12.2012

Skull Stripping of Neonatal Brain MRI: Using Prior Shape Information with Graph Cuts

verfasst von: Dwarikanath Mahapatra

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

In this paper, we propose a novel technique for skull stripping of infant (neonatal) brain magnetic resonance images using prior shape information within a graph cut framework. Skull stripping plays an important role in brain image analysis and is a major challenge for neonatal brain images. Popular methods like the brain surface extractor (BSE) and brain extraction tool (BET) do not produce satisfactory results for neonatal images due to poor tissue contrast, weak boundaries between brain and non-brain regions, and low spatial resolution. Inclusion of prior shape information helps in accurate identification of brain and non-brain tissues. Prior shape information is obtained from a set of labeled training images. The probability of a pixel belonging to the brain is obtained from the prior shape mask and included in the penalty term of the cost function. An extra smoothness term is based on gradient information that helps identify the weak boundaries between the brain and non-brain region. Experimental results on real neonatal brain images show that compared to BET, BSE, and other methods, our method achieves superior segmentation performance for neonatal brain images and comparable performance for adult brain images.
Literatur
1.
Zurück zum Zitat Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876, 2001PubMedCrossRef Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876, 2001PubMedCrossRef
2.
Zurück zum Zitat Hahn H, Peitgen H: The skull stripping problem in MRI solved by a single 3D watershed transform. In: MICCAI, 2000, pp 134–143 Hahn H, Peitgen H: The skull stripping problem in MRI solved by a single 3D watershed transform. In: MICCAI, 2000, pp 134–143
3.
4.
Zurück zum Zitat Zhuang, A., Valentino, D., Toga, A.: Skull stripping magnetic resonance brain images using a model-based level set. Neuroimage 32:79–92, 2006PubMedCrossRef Zhuang, A., Valentino, D., Toga, A.: Skull stripping magnetic resonance brain images using a model-based level set. Neuroimage 32:79–92, 2006PubMedCrossRef
5.
Zurück zum Zitat Huang A, Abugharbieh R, Ram R, Trabouslee A: MRI brain extraction with combined expectation maximization and geodesic active contours. In: IEEE Intl Symposium in Signal Processing and Information Technology, 2006 Huang A, Abugharbieh R, Ram R, Trabouslee A: MRI brain extraction with combined expectation maximization and geodesic active contours. In: IEEE Intl Symposium in Signal Processing and Information Technology, 2006
6.
Zurück zum Zitat Segonne, F., Dale, A., Busa, E., Glesner, M., Salat, D., Hahn, H., Fischl, B.: A hybrid approach to the skull stripping problem in mri. Neuroimage 22:1060–1075, 2004PubMedCrossRef Segonne, F., Dale, A., Busa, E., Glesner, M., Salat, D., Hahn, H., Fischl, B.: A hybrid approach to the skull stripping problem in mri. Neuroimage 22:1060–1075, 2004PubMedCrossRef
7.
Zurück zum Zitat Huppi, P., Warfield, S., Kikinis, R., Barnes, P., Zientara, G., FA, F.J., Tsuji, M., Volpe, J.: Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann. Neurol 43(2):224–235, 1998PubMedCrossRef Huppi, P., Warfield, S., Kikinis, R., Barnes, P., Zientara, G., FA, F.J., Tsuji, M., Volpe, J.: Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann. Neurol 43(2):224–235, 1998PubMedCrossRef
8.
Zurück zum Zitat Shi, F., Fan, Y., Tang, S., Gilmore, J., Lin, W., Shen, D.: Neonatal brain image segmentation in longitudinal mri studies. Neuroimage 49:391–400, 2010PubMedCrossRef Shi, F., Fan, Y., Tang, S., Gilmore, J., Lin, W., Shen, D.: Neonatal brain image segmentation in longitudinal mri studies. Neuroimage 49:391–400, 2010PubMedCrossRef
11.
Zurück zum Zitat Atkins, M., Mackiewich, B.: Fully automatic segmentation of the brain in mri. IEEE Trans Med Imag 417:98–107, 1998CrossRef Atkins, M., Mackiewich, B.: Fully automatic segmentation of the brain in mri. IEEE Trans Med Imag 417:98–107, 1998CrossRef
12.
Zurück zum Zitat Kapur, T., Grimson, W., Wells, W., Kikinis, R.: Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127, 1996PubMedCrossRef Kapur, T., Grimson, W., Wells, W., Kikinis, R.: Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127, 1996PubMedCrossRef
13.
Zurück zum Zitat Lemieux, L., Hag emann, G., Krakow, K., Woermann, F.: Fast, accurate and reproducible automatic segmentation of the brain in t1-weighted volume mri data. Magn.Reson. Med. 42:127–135, 1999PubMedCrossRef Lemieux, L., Hag emann, G., Krakow, K., Woermann, F.: Fast, accurate and reproducible automatic segmentation of the brain in t1-weighted volume mri data. Magn.Reson. Med. 42:127–135, 1999PubMedCrossRef
14.
Zurück zum Zitat Sadananthan, S., Zheng, W., Chee, M., Zagorodnov, V.: Skull stripping using graph cuts. Neuroimage 49:225–239, 2010PubMedCrossRef Sadananthan, S., Zheng, W., Chee, M., Zagorodnov, V.: Skull stripping using graph cuts. Neuroimage 49:225–239, 2010PubMedCrossRef
15.
Zurück zum Zitat Park, J., Keller, J.: Snakes on the watershed. IEEE Trans. Pattern Anal. Mach. Intelli. 23:1201–1205, 2001CrossRef Park, J., Keller, J.: Snakes on the watershed. IEEE Trans. Pattern Anal. Mach. Intelli. 23:1201–1205, 2001CrossRef
16.
Zurück zum Zitat Zeng, X., Staib, L., Schultz, R, Duncan, J.: Segmentation and measurement of the cortex from 3d mr images using coupled surfaces propagation. IEEE Trans. Med. Imag. 18(10):100–111, 1999 Zeng, X., Staib, L., Schultz, R, Duncan, J.: Segmentation and measurement of the cortex from 3d mr images using coupled surfaces propagation. IEEE Trans. Med. Imag. 18(10):100–111, 1999
17.
Zurück zum Zitat Rehm, K., Schaper, K., Anderson, J., Woods, R., Stoltzner, S., Rottenberg, D.: Putting our heads together a consensus approach to brain/non-brain segmentation in t1-weighted MR volumes. Neuroimage 22:1262–1270, 2004PubMedCrossRef Rehm, K., Schaper, K., Anderson, J., Woods, R., Stoltzner, S., Rottenberg, D.: Putting our heads together a consensus approach to brain/non-brain segmentation in t1-weighted MR volumes. Neuroimage 22:1262–1270, 2004PubMedCrossRef
18.
Zurück zum Zitat Iglesias, J., Liu, C.Y., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imag. 30(9):1617–1634, 2011PubMedCrossRef Iglesias, J., Liu, C.Y., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imag. 30(9):1617–1634, 2011PubMedCrossRef
19.
Zurück zum Zitat Wels M, Carneiro G, Aplas A, Huber M, Hornegger J, Comaniciu D: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d MRI. In: MICCAI, 2008, pp 67–75 Wels M, Carneiro G, Aplas A, Huber M, Hornegger J, Comaniciu D: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d MRI. In: MICCAI, 2008, pp 67–75
20.
Zurück zum Zitat Tu, Z., Zheng, S., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Dinov, I.Thompson, P., Toga, A.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Trans. Med. Imag. 26(4):541–552, 2007PubMedCrossRef Tu, Z., Zheng, S., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Dinov, I.Thompson, P., Toga, A.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Trans. Med. Imag. 26(4):541–552, 2007PubMedCrossRef
21.
Zurück zum Zitat Shi, F., Yap, P.T., Fan, Y., Gilmore, J., Lin, W., Shen, D.: Construction of multi-regionmulti-reference atlases for neonatal brain mri segmentation. Neuroimage 51:684–693, 2010PubMedCrossRef Shi, F., Yap, P.T., Fan, Y., Gilmore, J., Lin, W., Shen, D.: Construction of multi-regionmulti-reference atlases for neonatal brain mri segmentation. Neuroimage 51:684–693, 2010PubMedCrossRef
22.
Zurück zum Zitat Prastawa, M., Gilmore, J., Lin, W., Gerig, G.: Automatic segmentation of mr images of the developing newborn brain. Med. Image Anal. 9:457–466, 2005PubMedCrossRef Prastawa, M., Gilmore, J., Lin, W., Gerig, G.: Automatic segmentation of mr images of the developing newborn brain. Med. Image Anal. 9:457–466, 2005PubMedCrossRef
23.
Zurück zum Zitat Weisenfeld, N.,Warfield, S.: Automatic segmentation of newborn brain mri. Neuroimage 47:564–572, 2009PubMedCrossRef Weisenfeld, N.,Warfield, S.: Automatic segmentation of newborn brain mri. Neuroimage 47:564–572, 2009PubMedCrossRef
24.
Zurück zum Zitat Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1222–1239, 2001CrossRef Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1222–1239, 2001CrossRef
25.
Zurück zum Zitat Bazin, P., Pham, D.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imag. 26:487–496, 2007PubMedCrossRef Bazin, P., Pham, D.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imag. 26:487–496, 2007PubMedCrossRef
26.
Zurück zum Zitat Nishida, M., Makris, N., Kennedy, D., Vangel, M., Fischl, B., Krishnamoorthy, K., Caviness,V., Grant., P.: Detailed semiautomated mri based morphometry of the neonatal brain: preliminary results. NeuroImage 32:1041–1049, 2006PubMedCrossRef Nishida, M., Makris, N., Kennedy, D., Vangel, M., Fischl, B., Krishnamoorthy, K., Caviness,V., Grant., P.: Detailed semiautomated mri based morphometry of the neonatal brain: preliminary results. NeuroImage 32:1041–1049, 2006PubMedCrossRef
27.
Zurück zum Zitat Pham, D., Prince, J.: An adaptive fuzzy c-means algorithmfor image segmentation in the presence of intensity inhomogeneities. Pattern Recogn. Lett. 20:57–68, 1999CrossRef Pham, D., Prince, J.: An adaptive fuzzy c-means algorithmfor image segmentation in the presence of intensity inhomogeneities. Pattern Recogn. Lett. 20:57–68, 1999CrossRef
28.
Zurück zum Zitat Song Z, Awate S, Licht D, Gee J: Clinical neonatal brain mri segmentation using adaptive nonparametric data models and intensity-based markov priors. In: MICCAI, 2007, pp 883–890 Song Z, Awate S, Licht D, Gee J: Clinical neonatal brain mri segmentation using adaptive nonparametric data models and intensity-based markov priors. In: MICCAI, 2007, pp 883–890
29.
Zurück zum Zitat Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A., Rueckert, D., Hajnal, J.: Automatic segmentation and reconstruction of the cortex from neonatal mri. Neuroimage 38:461–477, 2007PubMedCrossRef Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A., Rueckert, D., Hajnal, J.: Automatic segmentation and reconstruction of the cortex from neonatal mri. Neuroimage 38:461–477, 2007PubMedCrossRef
30.
Zurück zum Zitat Freedman D, Zhang T: Interactive graph cut based segmentation with shape priors. In: CVPR, 2005, pp 755–762 Freedman D, Zhang T: Interactive graph cut based segmentation with shape priors. In: CVPR, 2005, pp 755–762
31.
Zurück zum Zitat Slabaugh G, Unal G: Graph cuts segmentation using an elliptical shape prior. In: ICIP, 2005, pp 1222–1225 Slabaugh G, Unal G: Graph cuts segmentation using an elliptical shape prior. In: ICIP, 2005, pp 1222–1225
32.
Zurück zum Zitat Vu N, Manjunath B: Shape prior segmentation of multiple objects with graph cuts.In: CVPR, 2008 Vu N, Manjunath B: Shape prior segmentation of multiple objects with graph cuts.In: CVPR, 2008
33.
Zurück zum Zitat Chittajallu D, Shah S, Kakadiaris I: A shape driven mrf model for the segmentation of organs in medical images. In: CVPR, 2010, pp 3233–3240 Chittajallu D, Shah S, Kakadiaris I: A shape driven mrf model for the segmentation of organs in medical images. In: CVPR, 2010, pp 3233–3240
34.
Zurück zum Zitat Veksler O: Star shape prior for graph cut segmentation. In: ECCV, 2008, pp 454–467 Veksler O: Star shape prior for graph cut segmentation. In: ECCV, 2008, pp 454–467
35.
Zurück zum Zitat Chen, Y., Tagare, H., S. Thiruvenkadam, Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. Intl. J. Comp. Vis. 50(3):315–328, 2002CrossRef Chen, Y., Tagare, H., S. Thiruvenkadam, Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. Intl. J. Comp. Vis. 50(3):315–328, 2002CrossRef
36.
Zurück zum Zitat Diedrichsen, J., Balsters, J., Flavell, J., E, E.C., Ramnani, N.: A probabilistic mr atlas of the human cerebellum. NeuroImage 46(1):39–46, 2009PubMedCrossRef Diedrichsen, J., Balsters, J., Flavell, J., E, E.C., Ramnani, N.: A probabilistic mr atlas of the human cerebellum. NeuroImage 46(1):39–46, 2009PubMedCrossRef
37.
Zurück zum Zitat Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imag. 16(5):642–652, 1997PubMedCrossRef Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imag. 16(5):642–652, 1997PubMedCrossRef
38.
Zurück zum Zitat Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell. 15(9):850–863, 1993CrossRef Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell. 15(9):850–863, 1993CrossRef
Metadaten
Titel
Skull Stripping of Neonatal Brain MRI: Using Prior Shape Information with Graph Cuts
verfasst von
Dwarikanath Mahapatra
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2012
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-012-9460-z

Weitere Artikel der Ausgabe 6/2012

Journal of Digital Imaging 6/2012 Zur Ausgabe

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Wie toxische Männlichkeit der Gesundheit von Männern schadet

08.04.2024 Andrologie Nachrichten

Stark, erfolgreich, allzeit belastbar – das sind Erwartungen, die Jungen und Männer von der Gesellschaft spüren. Das kann sie „toxisch“ werden lassen – und letztlich sogar der Gesundheit schaden, mahnt Dr. Dirk Sander von der Deutschen Aidshilfe.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.