Skip to main content
Erschienen in: Endocrine Pathology 1/2013

01.03.2013

Stem Cells and Cancer Stem-Like Cells in Endocrine Tissues

verfasst von: Ricardo V. Lloyd, Heather Hardin, Celina Montemayor-Garcia, Fabio Rotondo, Luis V Syro, Eva Horvath, Kalman Kovacs

Erschienen in: Endocrine Pathology | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Cancer stem-like cells are a subpopulation of self-renewing cells that are more resistant to chemotherapy and radiation therapy than the other surrounding cancer cells. The cancer stem cell model predicts that only a subset of cancer cells possess the ability to self-renew and produce progenitor cells that can reconstitute and sustain tumor growth. Evidence supporting the existence of cancer stem-like cells in the thyroid, pituitary, and in other endocrine tissues is rapidly accumulating. These cells have been studied using specific biomarkers including: CD133, CD44, Nestin, Nanog, and aldehyde dehydrogenase enzyme. Putative cancer stem-like cells can be studied in vitro using serum-free media supplemented with basic fibroblast growth factor and epidermal growth factor grown in low attachment plates or in extracellular matrix leading to sphere formation in vitro. Cancer stem-like cells can also be separated by fluorescent cell sorting and used for in vitro or in vivo studies. Injection of enriched populations of cancer stem-like cells (also referred to as tumor initiating cells) into immunodeficient mice results in growth of xenografts which express cancer stem-like biomarkers. Human cancer stem-like cells have been identified in thyroid cancer cell lines, in primary thyroid cancers, in normal pituitary, and in pituitary tumors. Other recent studies suggest the existence of stem cells and cancer stem-like cells in endocrine tumors of the gastrointestinal tract, pancreas, lungs, adrenal, parathyroid, and skin. New discoveries in this field may lead to more effective therapies for highly aggressive and lethal endocrine cancers.
Literatur
1.
Zurück zum Zitat De Lellis RA, Lloyd RV, Heitz PU, Eng C, editors. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press, 2004. De Lellis RA, Lloyd RV, Heitz PU, Eng C, editors. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press, 2004.
2.
Zurück zum Zitat Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol 22:395–404, 2010.CrossRef Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol 22:395–404, 2010.CrossRef
3.
Zurück zum Zitat Weissman IL Stem cells: units of development, units of regeneration and units in evolution. Cell 100:157–168, 2000.PubMedCrossRef Weissman IL Stem cells: units of development, units of regeneration and units in evolution. Cell 100:157–168, 2000.PubMedCrossRef
4.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 282:1827, 1998.CrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 282:1827, 1998.CrossRef
5.
Zurück zum Zitat Kern SE, Shibata D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 67:8985–8, 2007.PubMedCrossRef Kern SE, Shibata D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 67:8985–8, 2007.PubMedCrossRef
6.
Zurück zum Zitat Hoshi N, Kusakabe T, Taylor BJ, Kimura S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 148:4251–8, 2007.PubMedCrossRef Hoshi N, Kusakabe T, Taylor BJ, Kimura S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 148:4251–8, 2007.PubMedCrossRef
7.
Zurück zum Zitat Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology 153:2514–25, 2012.PubMedCrossRef Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology 153:2514–25, 2012.PubMedCrossRef
8.
Zurück zum Zitat Klonisch T, Hoang-Vu C, Hombach-Klonisch S. Thyroid stem cells and cancer. Thyroid 19:1303–15, 2009.PubMedCrossRef Klonisch T, Hoang-Vu C, Hombach-Klonisch S. Thyroid stem cells and cancer. Thyroid 19:1303–15, 2009.PubMedCrossRef
10.
Zurück zum Zitat Malaguarnera R, Morcavallo A, Giuliano S, Belfiore A. Thyroid cancer development and progression: emerging role of cancer stem cells. Minerva Endocrinol 37:103–15, 2012.PubMed Malaguarnera R, Morcavallo A, Giuliano S, Belfiore A. Thyroid cancer development and progression: emerging role of cancer stem cells. Minerva Endocrinol 37:103–15, 2012.PubMed
11.
Zurück zum Zitat Fierabracci A. Identifying thyroid stem/progenitor cells: advances and limitations. J Endocrinol 213:1–13, 2012.PubMedCrossRef Fierabracci A. Identifying thyroid stem/progenitor cells: advances and limitations. J Endocrinol 213:1–13, 2012.PubMedCrossRef
12.
Zurück zum Zitat Davies TF, Latif R, Minsky NC, Ma R. Clinical review: the emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab 96:2692–702, 2011.PubMedCrossRef Davies TF, Latif R, Minsky NC, Ma R. Clinical review: the emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab 96:2692–702, 2011.PubMedCrossRef
13.
Zurück zum Zitat Thomas D, Friedman S, Lin RY. Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 15:51–8, 2008.PubMedCrossRef Thomas D, Friedman S, Lin RY. Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 15:51–8, 2008.PubMedCrossRef
14.
Zurück zum Zitat Malguarnera R, Morcavallo A, Giuliano S, Belfiore A. Thyroid cancer development and progression: emerging role of cancer stem cells. Minerva Endocrinol 37:103–115, 2012. Malguarnera R, Morcavallo A, Giuliano S, Belfiore A. Thyroid cancer development and progression: emerging role of cancer stem cells. Minerva Endocrinol 37:103–115, 2012.
15.
Zurück zum Zitat Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab 92:3681–8, 2007.PubMedCrossRef Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab 92:3681–8, 2007.PubMedCrossRef
16.
Zurück zum Zitat Fierabracci A, Puglisi MA, Giuliani L, Mattarocci S, Gallinella-Muzi M. Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol 198:471–87, 2008.PubMedCrossRef Fierabracci A, Puglisi MA, Giuliani L, Mattarocci S, Gallinella-Muzi M. Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol 198:471–87, 2008.PubMedCrossRef
17.
Zurück zum Zitat Gómez-Gaviro MV, Lovell-Badge R, Fernández-Avilés F, Lara-Pezzi E. The vascular stem cell niche. J Cardiovasc Transl Res 5: 618–630, 2012PubMedCrossRef Gómez-Gaviro MV, Lovell-Badge R, Fernández-Avilés F, Lara-Pezzi E. The vascular stem cell niche. J Cardiovasc Transl Res 5: 618–630, 2012PubMedCrossRef
18.
Zurück zum Zitat Wang H, Zhang P, Liu L, Zou L. Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Crit Rev Oncol Hematol 85(1):1–8, 2013 Wang H, Zhang P, Liu L, Zou L. Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Crit Rev Oncol Hematol 85(1):1–8, 2013
19.
Zurück zum Zitat Cameselle-Teijeiro J, Febles-Pérez C, Sobrinho-Simões M. Papillary and mucoepidermoid carcinoma of the thyroid with anaplastic transformation: a case report with histologic and immunohistochemical findings that support a provocative histogenetic hypothesis. Pathol Res Pract 191:1214–21, 1995.PubMedCrossRef Cameselle-Teijeiro J, Febles-Pérez C, Sobrinho-Simões M. Papillary and mucoepidermoid carcinoma of the thyroid with anaplastic transformation: a case report with histologic and immunohistochemical findings that support a provocative histogenetic hypothesis. Pathol Res Pract 191:1214–21, 1995.PubMedCrossRef
20.
Zurück zum Zitat Asioli S, Erickson LA, Lloyd RV. Solid cell nests in Hashimoto’s thyroiditis sharing features with papillary thyroid microcarcinoma. Endocr Pathol 20:197–203, 2009.PubMedCrossRef Asioli S, Erickson LA, Lloyd RV. Solid cell nests in Hashimoto’s thyroiditis sharing features with papillary thyroid microcarcinoma. Endocr Pathol 20:197–203, 2009.PubMedCrossRef
21.
Zurück zum Zitat Aratake Y, Nomura H, Kotani T, Marutsuka K, Kobayashi K, Kuma K, Miyauchi A, Okayama A, Tamura K. Coexistent anaplastic and differentiated thyroid carcinoma: an immunohistochemical study. Am J Clin Pathol 125:399–406, 2006. Aratake Y, Nomura H, Kotani T, Marutsuka K, Kobayashi K, Kuma K, Miyauchi A, Okayama A, Tamura K. Coexistent anaplastic and differentiated thyroid carcinoma: an immunohistochemical study. Am J Clin Pathol 125:399–406, 2006.
22.
Zurück zum Zitat Albores-Saavedra J, Hernandez M, Sanchez-Sosa S, Simpson K, Angeles A, Henson DE. Histologic variants of papillary and follicular carcinomas associated with anaplastic spindle and giant cell carcinomas of the thyroid: an analysis of rhabdoid and thyroglobulin inclusions. Am J Surg Pathol 31:729–36, 2007.PubMedCrossRef Albores-Saavedra J, Hernandez M, Sanchez-Sosa S, Simpson K, Angeles A, Henson DE. Histologic variants of papillary and follicular carcinomas associated with anaplastic spindle and giant cell carcinomas of the thyroid: an analysis of rhabdoid and thyroglobulin inclusions. Am J Surg Pathol 31:729–36, 2007.PubMedCrossRef
23.
Zurück zum Zitat Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol 17:1359–63, 2004.PubMedCrossRef Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol 17:1359–63, 2004.PubMedCrossRef
24.
Zurück zum Zitat Takano T, Amino N. Fetal cell carcinogenesis: a new hypothesis for better understanding of thyroid carcinoma. Thyroid 15:432–8, 2005.PubMedCrossRef Takano T, Amino N. Fetal cell carcinogenesis: a new hypothesis for better understanding of thyroid carcinoma. Thyroid 15:432–8, 2005.PubMedCrossRef
25.
Zurück zum Zitat Takano T. Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol 17:233–40, 2007.PubMedCrossRef Takano T. Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol 17:233–40, 2007.PubMedCrossRef
26.
Zurück zum Zitat Yang Z, Wang Z, Fan Y, Zheng Q. Expression of CD133 in SW620 colorectal cancer cells is modulated by the microenvironment. Oncol Lett 4:75–79, 2012PubMed Yang Z, Wang Z, Fan Y, Zheng Q. Expression of CD133 in SW620 colorectal cancer cells is modulated by the microenvironment. Oncol Lett 4:75–79, 2012PubMed
27.
Zurück zum Zitat Liu W, Wu L, Shen XM, Shi LJ, Zhang CP, Xu LQ, et al. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer 132(4):868–74, 2013 Liu W, Wu L, Shen XM, Shi LJ, Zhang CP, Xu LQ, et al. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer 132(4):868–74, 2013
28.
Zurück zum Zitat Choi SA, Wang KC, Phi JH, Lee JY, Park CK, Park SH, et al. A distinct subpopulation within CD133 positive brain tumor cells shares characteristics with endothelial progenitor cells. Cancer Lett 324:221–30, 2012.PubMedCrossRef Choi SA, Wang KC, Phi JH, Lee JY, Park CK, Park SH, et al. A distinct subpopulation within CD133 positive brain tumor cells shares characteristics with endothelial progenitor cells. Cancer Lett 324:221–30, 2012.PubMedCrossRef
29.
Zurück zum Zitat He H, Li MW, Niu CS. The pathological characteristics of glioma stem cell niches. J Clin Neurosci 19:121–7, 2012.PubMedCrossRef He H, Li MW, Niu CS. The pathological characteristics of glioma stem cell niches. J Clin Neurosci 19:121–7, 2012.PubMedCrossRef
30.
Zurück zum Zitat Ferrandina G, Petrillo M, Bonanno G, Scambia G. Targeting CD133 antigen in cancer. Expert Opin Ther Targets 13:823–37, 2009.PubMedCrossRef Ferrandina G, Petrillo M, Bonanno G, Scambia G. Targeting CD133 antigen in cancer. Expert Opin Ther Targets 13:823–37, 2009.PubMedCrossRef
31.
Zurück zum Zitat Catalano V, Di Franco S, Lovino F, Dieli F, Stassi G, Todaro M. CD133 as a target for colon cancer. Expert Opin Ther Targets. 16:259–67, 2012.PubMedCrossRef Catalano V, Di Franco S, Lovino F, Dieli F, Stassi G, Todaro M. CD133 as a target for colon cancer. Expert Opin Ther Targets. 16:259–67, 2012.PubMedCrossRef
32.
Zurück zum Zitat Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71:3991–4001, 2011.PubMedCrossRef Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71:3991–4001, 2011.PubMedCrossRef
33.
Zurück zum Zitat Christgen M, Ballmaier M, Lehmann U, Kreipe H. Detection of putative cancer stem cells of the side population phenotype in human tumor cell cultures. Methods Mol Biol 878:201–15, 2012.PubMedCrossRef Christgen M, Ballmaier M, Lehmann U, Kreipe H. Detection of putative cancer stem cells of the side population phenotype in human tumor cell cultures. Methods Mol Biol 878:201–15, 2012.PubMedCrossRef
34.
Zurück zum Zitat Britton KM, Eyre R, Harvey IJ, Stemke-Hale K, Browell D, Lennard TW, Meeson AP. Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323:97–105, 2012.PubMedCrossRef Britton KM, Eyre R, Harvey IJ, Stemke-Hale K, Browell D, Lennard TW, Meeson AP. Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323:97–105, 2012.PubMedCrossRef
35.
Zurück zum Zitat Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8, 2003.PubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8, 2003.PubMedCrossRef
36.
Zurück zum Zitat Todaro M, Lovino F, Eterno V, Cammareri P, Gambara G, Espina V, et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70:8874–85, 2010.PubMedCrossRef Todaro M, Lovino F, Eterno V, Cammareri P, Gambara G, Espina V, et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70:8874–85, 2010.PubMedCrossRef
37.
38.
39.
Zurück zum Zitat Alison MR, Lin WR, Lim SM, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev. 38:589–98, 2012.PubMedCrossRef Alison MR, Lin WR, Lim SM, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev. 38:589–98, 2012.PubMedCrossRef
40.
Zurück zum Zitat Quail DF, Taylor MJ, Postovit LM. Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther 7:197–216, 2012.PubMedCrossRef Quail DF, Taylor MJ, Postovit LM. Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther 7:197–216, 2012.PubMedCrossRef
41.
Zurück zum Zitat Prud’homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 18:2838–49, 2012PubMed Prud’homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 18:2838–49, 2012PubMed
42.
Zurück zum Zitat Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V, et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148:1797–803, 2007.PubMedCrossRef Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V, et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148:1797–803, 2007.PubMedCrossRef
43.
Zurück zum Zitat Zito G, Richiusa P, Bommarito A, Carissimi E, Russo L, Coppola A, et al. In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One 3:e3544, 2008.PubMedCrossRef Zito G, Richiusa P, Bommarito A, Carissimi E, Russo L, Coppola A, et al. In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One 3:e3544, 2008.PubMedCrossRef
44.
Zurück zum Zitat Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93:4331–41, 2008.PubMedCrossRef Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93:4331–41, 2008.PubMedCrossRef
45.
Zurück zum Zitat Friedman S, Lu M, Schultz A, Thomas D, Lin RY. CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. PLoS One 4:e5395, 2009.PubMedCrossRef Friedman S, Lu M, Schultz A, Thomas D, Lin RY. CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. PLoS One 4:e5395, 2009.PubMedCrossRef
46.
Zurück zum Zitat Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 97:E510–20, 2012.PubMedCrossRef Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 97:E510–20, 2012.PubMedCrossRef
47.
Zurück zum Zitat Zhu W, Hai T, Ye L, Cote GJ. Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab 95:439–44, 2010.PubMedCrossRef Zhu W, Hai T, Ye L, Cote GJ. Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab 95:439–44, 2010.PubMedCrossRef
48.
Zurück zum Zitat Malguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V, et al A. Insulin receptor isoforms and insulin-like growth factor receptor inhuman follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab 96:766–74, 2011CrossRef Malguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V, et al A. Insulin receptor isoforms and insulin-like growth factor receptor inhuman follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab 96:766–74, 2011CrossRef
49.
Zurück zum Zitat Liu J, Brown RE. Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Clin Exp Pathol 3:755–62, 2010.PubMed Liu J, Brown RE. Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Clin Exp Pathol 3:755–62, 2010.PubMed
50.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell 139:871–90, 2009.PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell 139:871–90, 2009.PubMedCrossRef
51.
Zurück zum Zitat Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–15, 2008.PubMedCrossRef Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–15, 2008.PubMedCrossRef
52.
Zurück zum Zitat Yang J, Wenberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–29, 2008.PubMedCrossRef Yang J, Wenberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–29, 2008.PubMedCrossRef
53.
Zurück zum Zitat Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104:2803–8, 2007.PubMedCrossRef Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104:2803–8, 2007.PubMedCrossRef
54.
Zurück zum Zitat Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, et al. TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype. J Clin Endocrinol Metab 96:E772–81, 2011.PubMedCrossRef Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, et al. TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype. J Clin Endocrinol Metab 96:E772–81, 2011.PubMedCrossRef
55.
Zurück zum Zitat Hardy RG, Vicente-Dueñas C, González-Herrero I, Anderson C, Flores T, Hughes S, et al. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Pathol 171:1037–46, 2007.PubMedCrossRef Hardy RG, Vicente-Dueñas C, González-Herrero I, Anderson C, Flores T, Hughes S, et al. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Pathol 171:1037–46, 2007.PubMedCrossRef
56.
Zurück zum Zitat Buehler D, Hardin H, Shan W, et al. Expression of epithelial–mesenchymal transition regulators SNAIZ and TWIST1 in thyroid carcinomas. Mod Pathol 2013 (In Press). Buehler D, Hardin H, Shan W, et al. Expression of epithelial–mesenchymal transition regulators SNAIZ and TWIST1 in thyroid carcinomas. Mod Pathol 2013 (In Press).
57.
Zurück zum Zitat Liu S, Clouthier SG, Wicha MS. Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia 17:15–21, 2012.PubMedCrossRef Liu S, Clouthier SG, Wicha MS. Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia 17:15–21, 2012.PubMedCrossRef
58.
Zurück zum Zitat Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59, 2006.PubMedCrossRef Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59, 2006.PubMedCrossRef
59.
Zurück zum Zitat Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–9, 2009.PubMedCrossRef Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–9, 2009.PubMedCrossRef
60.
Zurück zum Zitat Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano , et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62, 2011PubMedCrossRef Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano , et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62, 2011PubMedCrossRef
61.
Zurück zum Zitat Rizzoti K and Lovell-Badge R. Regenerative Medicine: organ recital in a dish. Nature 480:44–6, 2011.PubMedCrossRef Rizzoti K and Lovell-Badge R. Regenerative Medicine: organ recital in a dish. Nature 480:44–6, 2011.PubMedCrossRef
62.
Zurück zum Zitat Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–95, 2009.PubMedCrossRef Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–95, 2009.PubMedCrossRef
63.
Zurück zum Zitat Vankelecom H. Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–70, 2007.PubMedCrossRef Vankelecom H. Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–70, 2007.PubMedCrossRef
64.
Zurück zum Zitat Vankelecom H, and Gremeaux L. Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:4788–88, 2010.CrossRef Vankelecom H, and Gremeaux L. Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:4788–88, 2010.CrossRef
65.
Zurück zum Zitat Castinetti F, Davis SW Brue T, Camper SA. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32:453–71, 2011.PubMedCrossRef Castinetti F, Davis SW Brue T, Camper SA. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32:453–71, 2011.PubMedCrossRef
66.
Zurück zum Zitat Fu Q, Gremeaux L, Luque M, Liekes D, Chen J, Buch T, et al. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology 153:3224–35, 2012.PubMedCrossRef Fu Q, Gremeaux L, Luque M, Liekes D, Chen J, Buch T, et al. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology 153:3224–35, 2012.PubMedCrossRef
67.
Zurück zum Zitat Yamashita M, Qian ZR, Sano T, Horvath E, Kovacs K. Immunohistochemical study on so-called follicular cells and folliculostellate cells in the human adenohypophysis. Pathol Int 55:244–7, 2005.PubMedCrossRef Yamashita M, Qian ZR, Sano T, Horvath E, Kovacs K. Immunohistochemical study on so-called follicular cells and folliculostellate cells in the human adenohypophysis. Pathol Int 55:244–7, 2005.PubMedCrossRef
68.
Zurück zum Zitat Horvath E, Coire CI, Kovacs K, Smyth HS. Folliculo-stellate cells of the human pituitary as adult stem cells: examples of their neoplastic potential. Ultrastruct Pathol 34:133–9, 2012.CrossRef Horvath E, Coire CI, Kovacs K, Smyth HS. Folliculo-stellate cells of the human pituitary as adult stem cells: examples of their neoplastic potential. Ultrastruct Pathol 34:133–9, 2012.CrossRef
69.
Zurück zum Zitat Florio T. Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94:265–77, 2011.PubMedCrossRef Florio T. Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94:265–77, 2011.PubMedCrossRef
70.
Zurück zum Zitat Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci SA 105:2907–12, 2008.CrossRef Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci SA 105:2907–12, 2008.CrossRef
71.
Zurück zum Zitat Wagner J, Lepore D, Thomas P. Differentiation of mouse embryonic stem cells into growth hormone and prolactin expressing cells in vitro. Mol Cell Endocrinol 273:68–74, 2007.PubMedCrossRef Wagner J, Lepore D, Thomas P. Differentiation of mouse embryonic stem cells into growth hormone and prolactin expressing cells in vitro. Mol Cell Endocrinol 273:68–74, 2007.PubMedCrossRef
72.
Zurück zum Zitat De Almeida JP, Sherman JH, Salvatori R, Quinones-Hinojosa A. Pituitary stem cells: review of the literature and current understanding. Neurosurgery 67:770–80, 2010.PubMedCrossRef De Almeida JP, Sherman JH, Salvatori R, Quinones-Hinojosa A. Pituitary stem cells: review of the literature and current understanding. Neurosurgery 67:770–80, 2010.PubMedCrossRef
73.
Zurück zum Zitat Inoue K, Mogi C, Ogawa S, Tomida S, Miyai S. Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? Arch Physiol Biochem 110:50–3, 2002.PubMedCrossRef Inoue K, Mogi C, Ogawa S, Tomida S, Miyai S. Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? Arch Physiol Biochem 110:50–3, 2002.PubMedCrossRef
74.
Zurück zum Zitat Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H. Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146:2376–87, 2005.PubMedCrossRef Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H. Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146:2376–87, 2005.PubMedCrossRef
75.
Zurück zum Zitat Jin L, Tsumanuma I, Ruebel KH, Bayliss JM, Lloyd RV Analysis of homogeneous populations of anterior pituitary folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction. Endocrinology 142:1703–9, 2001.PubMedCrossRef Jin L, Tsumanuma I, Ruebel KH, Bayliss JM, Lloyd RV Analysis of homogeneous populations of anterior pituitary folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction. Endocrinology 142:1703–9, 2001.PubMedCrossRef
76.
Zurück zum Zitat Gleiberman AS, Ichurina T, Encinas JM, Roig JL, Krasnov P, Balordi F, et al. Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci USA 105:6332–7, 2008.PubMedCrossRef Gleiberman AS, Ichurina T, Encinas JM, Roig JL, Krasnov P, Balordi F, et al. Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci USA 105:6332–7, 2008.PubMedCrossRef
77.
Zurück zum Zitat Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H. Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology 94:302–12, 2011.PubMedCrossRef Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H. Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology 94:302–12, 2011.PubMedCrossRef
78.
Zurück zum Zitat Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, et al. Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101:303–11, 2009.PubMedCrossRef Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, et al. Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101:303–11, 2009.PubMedCrossRef
79.
Zurück zum Zitat Gaur P, Sceusi EL, Samuel S, Xia L, Fan F, Zhou Y et al. Identification of cancer stem cells in human gastrointestinal carcinoid and neuroendocrine tumors. Gastroenterology 141:1728–37, 2011.PubMedCrossRef Gaur P, Sceusi EL, Samuel S, Xia L, Fan F, Zhou Y et al. Identification of cancer stem cells in human gastrointestinal carcinoid and neuroendocrine tumors. Gastroenterology 141:1728–37, 2011.PubMedCrossRef
80.
Zurück zum Zitat Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, et al. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69:845–54, 2009.PubMedCrossRef Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, et al. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69:845–54, 2009.PubMedCrossRef
81.
Zurück zum Zitat Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol 18:55–61, 2010.PubMedCrossRef Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol 18:55–61, 2010.PubMedCrossRef
82.
Zurück zum Zitat Simon DP, Hammer GD. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol Cell Endocrinol 351:2–11, 2012.PubMedCrossRef Simon DP, Hammer GD. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol Cell Endocrinol 351:2–11, 2012.PubMedCrossRef
83.
Zurück zum Zitat Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R et al. Side population does not define stem cell-like cancer cells in the adrenocortical carcinoma cell line NCI h295R. Endocrinology 149:1314–22, 2008.PubMedCrossRef Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R et al. Side population does not define stem cell-like cancer cells in the adrenocortical carcinoma cell line NCI h295R. Endocrinology 149:1314–22, 2008.PubMedCrossRef
84.
Zurück zum Zitat Fang SH, Guidroz JA, O’Malley Y, Lal G, Sugg SL, Howe JR, et al. Expansion of a cell population expressing stem cell markers in parathyroid glands from patients with hyperparathyroidism. Ann Surg 251:107–13, 2010.PubMedCrossRef Fang SH, Guidroz JA, O’Malley Y, Lal G, Sugg SL, Howe JR, et al. Expansion of a cell population expressing stem cell markers in parathyroid glands from patients with hyperparathyroidism. Ann Surg 251:107–13, 2010.PubMedCrossRef
85.
Zurück zum Zitat Laga AC, Lai CY, Zhan Q, Huang SJ, Veazquez EF, Yang Q, et al. Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol 176:903–13, 2010.PubMedCrossRef Laga AC, Lai CY, Zhan Q, Huang SJ, Veazquez EF, Yang Q, et al. Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol 176:903–13, 2010.PubMedCrossRef
Metadaten
Titel
Stem Cells and Cancer Stem-Like Cells in Endocrine Tissues
verfasst von
Ricardo V. Lloyd
Heather Hardin
Celina Montemayor-Garcia
Fabio Rotondo
Luis V Syro
Eva Horvath
Kalman Kovacs
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Endocrine Pathology / Ausgabe 1/2013
Print ISSN: 1046-3976
Elektronische ISSN: 1559-0097
DOI
https://doi.org/10.1007/s12022-013-9235-1

Weitere Artikel der Ausgabe 1/2013

Endocrine Pathology 1/2013 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …