Skip to main content
Erschienen in: Experimental Brain Research 4/2007

01.06.2007 | Research Article

Visual cortex activation in kinesthetic guidance of reaching

verfasst von: W. G. Darling, R. J. Seitz, S. Peltier, L. Tellmann, A. J. Butler

Erschienen in: Experimental Brain Research | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used 15O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.
Literatur
Zurück zum Zitat Agnew JA, Zeffiro TA, Eden GF (2004) Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22(1):289–303PubMedCrossRef Agnew JA, Zeffiro TA, Eden GF (2004) Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22(1):289–303PubMedCrossRef
Zurück zum Zitat Alary F, Simoes C, Jousmaki V, Forss N, Hari R (2002) Cortical activation associated with passive movements of the human index finger: an MEG study. Neuroimage 15(3):691–698PubMedCrossRef Alary F, Simoes C, Jousmaki V, Forss N, Hari R (2002) Cortical activation associated with passive movements of the human index finger: an MEG study. Neuroimage 15(3):691–698PubMedCrossRef
Zurück zum Zitat Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. [see comment]. Nat Neurosci 7(5):542–548PubMedCrossRef Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. [see comment]. Nat Neurosci 7(5):542–548PubMedCrossRef
Zurück zum Zitat Bard C, Turrell Y, Fleury M, Teasdale N, Lamarre Y, Martin O (1999) Deafferentation and pointing with visual double-step perturbations. Exp Brain Res 125(4):410–416PubMedCrossRef Bard C, Turrell Y, Fleury M, Teasdale N, Lamarre Y, Martin O (1999) Deafferentation and pointing with visual double-step perturbations. Exp Brain Res 125(4):410–416PubMedCrossRef
Zurück zum Zitat Baud-Bovy G, Viviani P (1998) Pointing to kinesthetic targets in space. J Neurosci 18(4):1528–1545PubMed Baud-Bovy G, Viviani P (1998) Pointing to kinesthetic targets in space. J Neurosci 18(4):1528–1545PubMed
Zurück zum Zitat Baud-Bovy G, Viviani P (2004) Amplitude and direction errors in kinesthetic pointing. Exp Brain Res 157(2):197–214PubMedCrossRef Baud-Bovy G, Viviani P (2004) Amplitude and direction errors in kinesthetic pointing. Exp Brain Res 157(2):197–214PubMedCrossRef
Zurück zum Zitat Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. [see comment]. Neuron 29(1):287–296PubMedCrossRef Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. [see comment]. Neuron 29(1):287–296PubMedCrossRef
Zurück zum Zitat Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. Sendai, Japan Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. Sendai, Japan
Zurück zum Zitat Butler AJ, Fink GR, Dohle C, Wunderlich G, Tellmann L, Seitz RJ, Zilles K, Freund H-J (2004) Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Hum Brain Mapp 21:165–177PubMedCrossRef Butler AJ, Fink GR, Dohle C, Wunderlich G, Tellmann L, Seitz RJ, Zilles K, Freund H-J (2004) Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Hum Brain Mapp 21:165–177PubMedCrossRef
Zurück zum Zitat Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562PubMedCrossRef Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562PubMedCrossRef
Zurück zum Zitat Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226PubMed Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226PubMed
Zurück zum Zitat Darling WG, Bartelt R (2003) Kinesthetic perception of visually specified axes. Exp Brain Res 149(1):40–47PubMed Darling WG, Bartelt R (2003) Kinesthetic perception of visually specified axes. Exp Brain Res 149(1):40–47PubMed
Zurück zum Zitat Darling WG, Hondzinski JM (1997) Visual perceptions of vertical and intrinsic longitudinal axes. Exp Brain Res 116(3):485–492PubMedCrossRef Darling WG, Hondzinski JM (1997) Visual perceptions of vertical and intrinsic longitudinal axes. Exp Brain Res 116(3):485–492PubMedCrossRef
Zurück zum Zitat Darling WG, Hondzinski JM (1999) Kinesthetic perceptions of earth- and body-fixed axes. Exp Brain Res 126:417–430PubMedCrossRef Darling WG, Hondzinski JM (1999) Kinesthetic perceptions of earth- and body-fixed axes. Exp Brain Res 126:417–430PubMedCrossRef
Zurück zum Zitat Darling WG, Miller GF (1993) Transformations between visual and kinesthetic coordinate systems in reaches to remembered object locations and orientations. Exp Brain Res 93(3):534–547PubMedCrossRef Darling WG, Miller GF (1993) Transformations between visual and kinesthetic coordinate systems in reaches to remembered object locations and orientations. Exp Brain Res 93(3):534–547PubMedCrossRef
Zurück zum Zitat Darling WG, Pizzimenti MA (2001) A coordinate system for visual motion perception. Exp Brain Res 141(2):174–183PubMedCrossRef Darling WG, Pizzimenti MA (2001) A coordinate system for visual motion perception. Exp Brain Res 141(2):174–183PubMedCrossRef
Zurück zum Zitat Darling WG, Williams TE (1997) Kinesthetic perceptions of intrinsic anterior-posterior axes. Exp Brain Res 117(3):465–471PubMedCrossRef Darling WG, Williams TE (1997) Kinesthetic perceptions of intrinsic anterior-posterior axes. Exp Brain Res 117(3):465–471PubMedCrossRef
Zurück zum Zitat Darling WG, Butler AJ, Williams TE (1996) Visual perceptions of head-fixed and trunk-fixed anterior/posterior axes. Exp Brain Res 112(1):127–134PubMedCrossRef Darling WG, Butler AJ, Williams TE (1996) Visual perceptions of head-fixed and trunk-fixed anterior/posterior axes. Exp Brain Res 112(1):127–134PubMedCrossRef
Zurück zum Zitat Darling WG, Bartelt R, Rizzo M (2004) Unilateral posterior parietal lobe lesions disrupt kinaesthetic representation of forearm orientation. J Neurol Neurosurg Psychiatry 75(3):428–435PubMedCrossRef Darling WG, Bartelt R, Rizzo M (2004) Unilateral posterior parietal lobe lesions disrupt kinaesthetic representation of forearm orientation. J Neurol Neurosurg Psychiatry 75(3):428–435PubMedCrossRef
Zurück zum Zitat Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. [erratum appears in Proc Natl Acad Sci U S A 1998 Sep 15;95(19):11499]. Proceedings of the National Academy of Sciences of the United States of America 94(25):14015–14018 Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. [erratum appears in Proc Natl Acad Sci U S A 1998 Sep 15;95(19):11499]. Proceedings of the National Academy of Sciences of the United States of America 94(25):14015–14018
Zurück zum Zitat Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431PubMedCrossRef Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431PubMedCrossRef
Zurück zum Zitat Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21(8):2919–2928PubMed Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21(8):2919–2928PubMed
Zurück zum Zitat Downing PE, Jiang Y, Shuman M, Kanwsiher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473PubMedCrossRef Downing PE, Jiang Y, Shuman M, Kanwsiher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473PubMedCrossRef
Zurück zum Zitat Evans AC, Kamber M, Collins DL, MacDonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder G, Stefan H (eds) Magnetic resonance imaging and epilepsy, pp 263–274 Evans AC, Kamber M, Collins DL, MacDonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder G, Stefan H (eds) Magnetic resonance imaging and epilepsy, pp 263–274
Zurück zum Zitat Friston KJ (1997) Testing for anatomically specified regional effects. Hum Brain Mapp 5(2):133–136PubMedCrossRef Friston KJ (1997) Testing for anatomically specified regional effects. Hum Brain Mapp 5(2):133–136PubMedCrossRef
Zurück zum Zitat Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878PubMedCrossRef Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878PubMedCrossRef
Zurück zum Zitat Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex 15(6):681–695PubMedCrossRef Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex 15(6):681–695PubMedCrossRef
Zurück zum Zitat Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F (1997) Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5(2):129–146PubMedCrossRef Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F (1997) Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5(2):129–146PubMedCrossRef
Zurück zum Zitat Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131PubMedCrossRef Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131PubMedCrossRef
Zurück zum Zitat Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239PubMedCrossRef Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239PubMedCrossRef
Zurück zum Zitat Muhlau M, Hermsdorfer J, Goldenberg G, Wohlschlager AM, Castrop F, Stahl R, Rottinger M, Erhard P, Haslinger B, Ceballos-Baumann AO et al (2005) Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43(7):1086–1098PubMedCrossRef Muhlau M, Hermsdorfer J, Goldenberg G, Wohlschlager AM, Castrop F, Stahl R, Rottinger M, Erhard P, Haslinger B, Ceballos-Baumann AO et al (2005) Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43(7):1086–1098PubMedCrossRef
Zurück zum Zitat Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104(3):527–533PubMedCrossRef Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104(3):527–533PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
Zurück zum Zitat Peelen MV, Downing PE (2005) Is the extrastriate body area involved in motor actions?[comment]. Nature Neuroscience 8(2):125; author reply 125–126 Peelen MV, Downing PE (2005) Is the extrastriate body area involved in motor actions?[comment]. Nature Neuroscience 8(2):125; author reply 125–126
Zurück zum Zitat Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: An event-related fMRI study. Neuropsychologia 44(13):2685–2690PubMedCrossRef Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: An event-related fMRI study. Neuropsychologia 44(13):2685–2690PubMedCrossRef
Zurück zum Zitat Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin MT (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48(5):849–858PubMedCrossRef Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin MT (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48(5):849–858PubMedCrossRef
Zurück zum Zitat Prather SC, Votaw JR, Sathian K (2004) Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia 42(8):1079–1087PubMedCrossRef Prather SC, Votaw JR, Sathian K (2004) Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia 42(8):1079–1087PubMedCrossRef
Zurück zum Zitat Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW (2002) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 17(1):447–460PubMedCrossRef Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW (2002) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 17(1):447–460PubMedCrossRef
Zurück zum Zitat Schluter ND, Krams M, Rushworth MFS, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39(2):105PubMedCrossRef Schluter ND, Krams M, Rushworth MFS, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39(2):105PubMedCrossRef
Zurück zum Zitat Seitz RJ, Knorr U, Azari HH, Freund H-J (1999) Visual network activation in recovery from sensorimotor stroke. Restor Neurol Neurosci 14(1):25–33PubMed Seitz RJ, Knorr U, Azari HH, Freund H-J (1999) Visual network activation in recovery from sensorimotor stroke. Restor Neurol Neurosci 14(1):25–33PubMed
Zurück zum Zitat Simoes C, Alary F, Forss N, Hari R (2002) Left-hemisphere-dominant SII activation after bilateral median nerve stimulation. Neuroimage 15(3):686–690PubMedCrossRef Simoes C, Alary F, Forss N, Hari R (2002) Left-hemisphere-dominant SII activation after bilateral median nerve stimulation. Neuroimage 15(3):686–690PubMedCrossRef
Zurück zum Zitat Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in 3-D space. J Neurophysiol 62(2):582–594PubMed Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in 3-D space. J Neurophysiol 62(2):582–594PubMed
Zurück zum Zitat Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255PubMedCrossRef Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255PubMedCrossRef
Zurück zum Zitat Toni I, Rushworth MF, Passingham RE (2001) Neural correlates of visuomotor associations. Spatial rules compared with arbitrary rules. Exp Brain Res 141(3):359–369PubMedCrossRef Toni I, Rushworth MF, Passingham RE (2001) Neural correlates of visuomotor associations. Spatial rules compared with arbitrary rules. Exp Brain Res 141(3):359–369PubMedCrossRef
Zurück zum Zitat Tsujimoto S, Sawaguchi T (2004) Properties of delay-period neuronal activity in the primate prefrontal cortex during memory- and sensory-guided saccade tasks. Eur J Neurosci 19(2):447–457PubMedCrossRef Tsujimoto S, Sawaguchi T (2004) Properties of delay-period neuronal activity in the primate prefrontal cortex during memory- and sensory-guided saccade tasks. Eur J Neurosci 19(2):447–457PubMedCrossRef
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMedCrossRef
Zurück zum Zitat Ullman JB. 1996. Structural equation modeling. In: Tabachnick BG, Fidell LS (eds) Using multivariate statistics. 3rd edn. HarperCollins College Publishers, New York, pp 709–819 Ullman JB. 1996. Structural equation modeling. In: Tabachnick BG, Fidell LS (eds) Using multivariate statistics. 3rd edn. HarperCollins College Publishers, New York, pp 709–819
Zurück zum Zitat Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99(3):507–523PubMedCrossRef Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99(3):507–523PubMedCrossRef
Zurück zum Zitat Weiss PH, Marshall JC, Wunderlich G, Tellmann L, Halligan PW, Freund HJ, Zilles K, Fink GR (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 12:2531–2541CrossRef Weiss PH, Marshall JC, Wunderlich G, Tellmann L, Halligan PW, Freund HJ, Zilles K, Fink GR (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 12:2531–2541CrossRef
Zurück zum Zitat Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 77(3):1581–1594PubMed Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 77(3):1581–1594PubMed
Zurück zum Zitat Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401(6753):587–590PubMedCrossRef Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401(6753):587–590PubMedCrossRef
Zurück zum Zitat Zhuang J, LaConte S, Peltier S, Zhang K, Hu X (2005) Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. NeuroImage 25(2):462PubMedCrossRef Zhuang J, LaConte S, Peltier S, Zhang K, Hu X (2005) Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. NeuroImage 25(2):462PubMedCrossRef
Metadaten
Titel
Visual cortex activation in kinesthetic guidance of reaching
verfasst von
W. G. Darling
R. J. Seitz
S. Peltier
L. Tellmann
A. J. Butler
Publikationsdatum
01.06.2007
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2007
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-006-0815-x

Weitere Artikel der Ausgabe 4/2007

Experimental Brain Research 4/2007 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.