Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 5/2019

11.11.2018 | Review Paper

Applying machine learning to continuously monitored physiological data

verfasst von: Barret Rush, Leo Anthony Celi, David J. Stone

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

The use of machine learning (ML) in healthcare has enormous potential for improving disease detection, clinical decision support, and workflow efficiencies. In this commentary, we review published and potential applications for the use of ML for monitoring within the hospital environment. We present use cases as well as several questions regarding the application of ML to the analysis of the vast amount of complex data that clinicians must interpret in the realm of continuous physiological monitoring. ML, especially employed in bidirectional conjunction with electronic health record data, has the potential to extract much more useful information out of this currently under-analyzed data source from a population level. As a data driven entity, ML is dependent on copious, high quality input data so that error can be introduced by low quality data sources. At present, while ML is being studied in hybrid formulations along with static expert systems for monitoring applications, it is not yet actively incorporated in the formal artificial learning sense of an algorithm constantly learning and updating its rules without external intervention. Finally, innovations in monitoring, including those supported by ML, will pose regulatory and medico-legal challenges, as well as questions regarding precisely how to incorporate these features into clinical care and medical education. Rigorous evaluation of ML techniques compared to traditional methods or other AI methods will be required to validate the algorithms developed with consideration of database limitations and potential learning errors. Demonstration of value on processes and outcomes will be necessary to support the use of ML as a feature in monitoring system development: Future research is needed to evaluate all AI based programs before clinical implementation in non-research settings.
Literatur
3.
4.
Zurück zum Zitat Wang S-L, Wu F, Wang B-H. Prediction of severe sepsis using SVM model. Adv Exp Med Biol. 2010;680:75–81.CrossRefPubMed Wang S-L, Wu F, Wang B-H. Prediction of severe sepsis using SVM model. Adv Exp Med Biol. 2010;680:75–81.CrossRefPubMed
5.
Zurück zum Zitat Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Informatics. 2016;4:e28.CrossRefPubMedPubMedCentral Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Informatics. 2016;4:e28.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017;6:e000158.CrossRefPubMedPubMedCentral McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017;6:e000158.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Mayaud L, Lai PS, Clifford GD, Tarassenko L, Celi LA, Annane D. Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med. 2013;41:954–62.CrossRefPubMedPubMedCentral Mayaud L, Lai PS, Clifford GD, Tarassenko L, Celi LA, Annane D. Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med. 2013;41:954–62.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2017;46:547–53.CrossRef Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2017;46:547–53.CrossRef
9.
Zurück zum Zitat Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4:e000234.CrossRefPubMedPubMedCentral Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4:e000234.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9:e110274.CrossRefPubMedPubMedCentral Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9:e110274.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Borges G, Brusamarello V. Sensor fusion methods for reducing false alarms in heart rate monitoring. J Clin Monit Comput. 2016;30:859–67.CrossRefPubMed Borges G, Brusamarello V. Sensor fusion methods for reducing false alarms in heart rate monitoring. J Clin Monit Comput. 2016;30:859–67.CrossRefPubMed
12.
Zurück zum Zitat Chen L, Dubrawski A, Wang D, Fiterau M, Guillame-Bert M, Bose E, et al. Using supervised machine learning to classify real alerts and artifact in online multisignal vital sign monitoring data. Crit Care Med. 2016;44:e456-63.PubMed Chen L, Dubrawski A, Wang D, Fiterau M, Guillame-Bert M, Bose E, et al. Using supervised machine learning to classify real alerts and artifact in online multisignal vital sign monitoring data. Crit Care Med. 2016;44:e456-63.PubMed
13.
Zurück zum Zitat Hravnak M, Chen L, Dubrawski A, Bose E, Clermont G, Pinsky MR. Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data. J Clin Monit Comput. 2016;30:875–88.CrossRefPubMed Hravnak M, Chen L, Dubrawski A, Bose E, Clermont G, Pinsky MR. Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data. J Clin Monit Comput. 2016;30:875–88.CrossRefPubMed
14.
Zurück zum Zitat Ansari S, Belle A, Ghanbari H, Salamango M, Najarian K. Suppression of false arrhythmia alarms in the ICU: a machine learning approach. Physiol Meas. 2016;37:1186–203.CrossRefPubMed Ansari S, Belle A, Ghanbari H, Salamango M, Najarian K. Suppression of false arrhythmia alarms in the ICU: a machine learning approach. Physiol Meas. 2016;37:1186–203.CrossRefPubMed
15.
Zurück zum Zitat Maldonado JR. Acute Brain Failure: Pathophysiology, diagnosis, management, and sequelae of delirium. Crit Care Clin. 2017;33:461–519.CrossRefPubMed Maldonado JR. Acute Brain Failure: Pathophysiology, diagnosis, management, and sequelae of delirium. Crit Care Clin. 2017;33:461–519.CrossRefPubMed
16.
Zurück zum Zitat Pandharipande PP, Ely EW, Arora RC, Balas MC, Boustani MA, La Calle GH, et al. The intensive care delirium research agenda: a multinational, interprofessional perspective. Intensive Care Med. 2017;43:1329–39.CrossRef Pandharipande PP, Ely EW, Arora RC, Balas MC, Boustani MA, La Calle GH, et al. The intensive care delirium research agenda: a multinational, interprofessional perspective. Intensive Care Med. 2017;43:1329–39.CrossRef
17.
Zurück zum Zitat Oh J, Cho D, Park J, Na SH, Kim J, Heo J, et al. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning. Physiol Meas. 2018;39:035004.CrossRefPubMed Oh J, Cho D, Park J, Na SH, Kim J, Heo J, et al. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning. Physiol Meas. 2018;39:035004.CrossRefPubMed
18.
Zurück zum Zitat Sottile P, Albers D, Higgins C, Mckeehan JMM. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med. 2017;46:e151–7.CrossRef Sottile P, Albers D, Higgins C, Mckeehan JMM. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med. 2017;46:e151–7.CrossRef
19.
Zurück zum Zitat Rush B, Stone DJ, Celi LA. From big data to artificial intelligence: harnessing data routinely collected in the process of care. Crit Care Med. 2018;46:345–6.CrossRefPubMedPubMedCentral Rush B, Stone DJ, Celi LA. From big data to artificial intelligence: harnessing data routinely collected in the process of care. Crit Care Med. 2018;46:345–6.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Barbato M, Barclay G, Potter J, Yeo W, Chung J. Correlation between observational scales of sedation and comfort and bispectral index scores. J Pain Symptom Manage. 2017;54:186–93.CrossRefPubMed Barbato M, Barclay G, Potter J, Yeo W, Chung J. Correlation between observational scales of sedation and comfort and bispectral index scores. J Pain Symptom Manage. 2017;54:186–93.CrossRefPubMed
21.
Zurück zum Zitat Nagaraj SB, Biswal S, Boyle EJ, Zhou DW, McClain LM, Bajwa EK, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45:e683–90.CrossRefPubMedPubMedCentral Nagaraj SB, Biswal S, Boyle EJ, Zhou DW, McClain LM, Bajwa EK, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45:e683–90.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nagaraj SB, McClain LM, Zhou DW, Biswal S, Rosenthal ES, Purdon PL, et al. Automatic classification of sedation levels in ICU patients using heart rate variability. Crit Care Med. 2016;44:e782-9.CrossRefPubMed Nagaraj SB, McClain LM, Zhou DW, Biswal S, Rosenthal ES, Purdon PL, et al. Automatic classification of sedation levels in ICU patients using heart rate variability. Crit Care Med. 2016;44:e782-9.CrossRefPubMed
23.
Zurück zum Zitat West N, McBeth PB, Brodie SM, van Heusden K, Sunderland S, Dumont GA, et al. Feasibility of continuous sedation monitoring in critically ill intensive care unit patients using the NeuroSENSE WAVCNSindex. J Clin Monit Comput. 2018;32:1081–91.CrossRefPubMed West N, McBeth PB, Brodie SM, van Heusden K, Sunderland S, Dumont GA, et al. Feasibility of continuous sedation monitoring in critically ill intensive care unit patients using the NeuroSENSE WAVCNSindex. J Clin Monit Comput. 2018;32:1081–91.CrossRefPubMed
24.
Zurück zum Zitat Wang Z-H, Chen H, Yang Y-L, Shi Z-H, Guo Q-H, Li Y-W, et al. Bispectral index can reliably detect deep sedation in mechanically ventilated patients: a prospective multicenter validation study. Anesth Analg. 2017;125:176–83.CrossRefPubMed Wang Z-H, Chen H, Yang Y-L, Shi Z-H, Guo Q-H, Li Y-W, et al. Bispectral index can reliably detect deep sedation in mechanically ventilated patients: a prospective multicenter validation study. Anesth Analg. 2017;125:176–83.CrossRefPubMed
25.
Zurück zum Zitat Moss TJ, Calland JF, Enfield KB, Gomez-Manjarres DC, Ruminski C, DiMarco JP, et al. New-onset atrial fibrillation in the critically ill. Crit Care Med. 2017;45:790–7.CrossRefPubMedPubMedCentral Moss TJ, Calland JF, Enfield KB, Gomez-Manjarres DC, Ruminski C, DiMarco JP, et al. New-onset atrial fibrillation in the critically ill. Crit Care Med. 2017;45:790–7.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Breslow MJ, Rosenfeld BA, Doerfler M, Burke G, Yates G, Stone DJ, et al. Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcomes: an alternative paradigm for intensivist staffing. Crit Care Med. 2004;32:31–8.CrossRefPubMed Breslow MJ, Rosenfeld BA, Doerfler M, Burke G, Yates G, Stone DJ, et al. Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcomes: an alternative paradigm for intensivist staffing. Crit Care Med. 2004;32:31–8.CrossRefPubMed
28.
Zurück zum Zitat Lilly CM, Zubrow MT, Kempner KM, Reynolds HN, Subramanian S, Eriksson EA, et al. Critical care telemedicine: evolution and state of the art. Crit Care Med. 2014;42:2429–36.CrossRefPubMed Lilly CM, Zubrow MT, Kempner KM, Reynolds HN, Subramanian S, Eriksson EA, et al. Critical care telemedicine: evolution and state of the art. Crit Care Med. 2014;42:2429–36.CrossRefPubMed
29.
Zurück zum Zitat Knight W. The dark secret at the heart of AI. MIT Technol Rev. 2017;120:54–63. Knight W. The dark secret at the heart of AI. MIT Technol Rev. 2017;120:54–63.
30.
Zurück zum Zitat Moskowitz A, McSparron J, Stone DJ, Celi LA. Preparing a new generation of clinicians for the era of big data. Harvard Med student Rev. 2015;2:24–7. Moskowitz A, McSparron J, Stone DJ, Celi LA. Preparing a new generation of clinicians for the era of big data. Harvard Med student Rev. 2015;2:24–7.
Metadaten
Titel
Applying machine learning to continuously monitored physiological data
verfasst von
Barret Rush
Leo Anthony Celi
David J. Stone
Publikationsdatum
11.11.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 5/2019
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0219-z

Weitere Artikel der Ausgabe 5/2019

Journal of Clinical Monitoring and Computing 5/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.