Skip to main content
Erschienen in: Neuroinformatics 4/2011

01.12.2011 | Original Article

Automated Analysis of Fundamental Features of Brain Structures

verfasst von: Jack L. Lancaster, D. Reese McKay, Matthew D. Cykowski, Michael J. Martinez, Xi Tan, Sunil Valaparla, Yi Zhang, Peter T. Fox

Erschienen in: Neuroinformatics | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

Automated image analysis of the brain should include measures of fundamental structural features such as size and shape. We used principal axes (P-A) measurements to measure overall size and shape of brain structures segmented from MR brain images. The rationale was that quantitative volumetric studies of brain structures would benefit from shape standardization as had been shown for whole brain studies. P-A analysis software was extended to include controls for variability in position and orientation to support individual structure spatial normalization (ISSN). The rationale was that ISSN would provide a bias-free means to remove elementary sources of a structure’s spatial variability in preparation for more detailed analyses. We studied nine brain structures (whole brain, cerebral hemispheres, cerebellum, brainstem, caudate, putamen, hippocampus, inferior frontal gyrus, and precuneus) from the 40-brain LPBA40 atlas. This paper provides the first report of anatomical positions and principal axes orientations within a standard reference frame, in addition to “shape/size related” principal axes measures, for the nine brain structures from the LPBA40 atlas. Analysis showed that overall size (mean volume) for internal brain structures was preserved using shape standardization while variance was reduced by more than 50%. Shape standardization provides increased statistical power for between-group volumetric studies of brain structures compared to volumetric studies that control only for whole brain size. To test ISSN’s ability to control for spatial variability of brain structures we evaluated the overlap of 40 regions of interest (ROIs) in a standard reference frame for the nine different brain structures before and after processing. Standardizations of orientation or shape were ineffective when not combined with position standardization. The greatest reduction in spatial variability was seen for combined standardizations of position, orientation and shape. These results show that ISSNs automated processing can be a valuable asset for measuring and controlling variability of fundamental features of brain structures.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alpert, N. M., Bradshaw, J. F., Kennedy, D., & Correia, J. A. (1990). The principal axis transformation—a method for image registration. Journal of Nuclear Medicine, 31, 1717–1722.PubMed Alpert, N. M., Bradshaw, J. F., Kennedy, D., & Correia, J. A. (1990). The principal axis transformation—a method for image registration. Journal of Nuclear Medicine, 31, 1717–1722.PubMed
Zurück zum Zitat Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRef Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRef
Zurück zum Zitat Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993. 1993 IEEE Conference Record. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993. 1993 IEEE Conference Record.
Zurück zum Zitat Kochunov, P., Fox, P., Lancaster, J., Tan, L. H., Amunts, K., Zilles, K., et al. (2003). Localized morphological brain differences between english-speaking caucasians and chinese-speaking asians: new evidence of anatomical plasticity. NeuroReport, 14(7), 961–964.PubMed Kochunov, P., Fox, P., Lancaster, J., Tan, L. H., Amunts, K., Zilles, K., et al. (2003). Localized morphological brain differences between english-speaking caucasians and chinese-speaking asians: new evidence of anatomical plasticity. NeuroReport, 14(7), 961–964.PubMed
Zurück zum Zitat Krause, E. F. (1986). Taxicab Geometry: An adventure in non-Euclidean geometry. New York: Dover. Krause, E. F. (1986). Taxicab Geometry: An adventure in non-Euclidean geometry. New York: Dover.
Zurück zum Zitat Le Goualher, G., Argenti, A. M., Duyme, M., WFC, Baaré, Hulshoff Pol, H. E., Boomsma, D. I., et al. (2000). Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central sulcus shape. Neuroimage, 11, 567–574.CrossRef Le Goualher, G., Argenti, A. M., Duyme, M., WFC, Baaré, Hulshoff Pol, H. E., Boomsma, D. I., et al. (2000). Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central sulcus shape. Neuroimage, 11, 567–574.CrossRef
Zurück zum Zitat Lancaster, J. L., & Fox, P. T. (2009). Talairach space as a tool for intersubject standardization in the brain. In I. N. Bankman (Ed.), Handbook of medical image processing and analysis. Chapter 38:629–641. New York: Academic Press. Lancaster, J. L., & Fox, P. T. (2009). Talairach space as a tool for intersubject standardization in the brain. In I. N. Bankman (Ed.), Handbook of medical image processing and analysis. Chapter 38:629–641. New York: Academic Press.
Zurück zum Zitat Lancaster, J. L., Cykowski, M. D., McKay, D. R., Kochunov, P., Fox, P. T., Rogers, W., et al. (2010). Anatomical global spatial normalization. Neuroinformatics [Epub ahead of print], PMID: 20582489, 26 Jun 2010. Lancaster, J. L., Cykowski, M. D., McKay, D. R., Kochunov, P., Fox, P. T., Rogers, W., et al. (2010). Anatomical global spatial normalization. Neuroinformatics [Epub ahead of print], PMID: 20582489, 26 Jun 2010.
Zurück zum Zitat Lange, N., Giedd, J. N., Castellanos, F. X., Vaituzis, A. C., & Rapoport, J. L. (1997). Variability of human brain structure size: ages 4–20 years. Psychiatry Research—Neuroimaging, 74(1), 1–12.CrossRef Lange, N., Giedd, J. N., Castellanos, F. X., Vaituzis, A. C., & Rapoport, J. L. (1997). Variability of human brain structure size: ages 4–20 years. Psychiatry Research—Neuroimaging, 74(1), 1–12.CrossRef
Zurück zum Zitat MacDonald, D., Avis, D., & Evans, A. E. (1994). Multiple surface identification and matching in magnetic resonance images. In R. A. Robb (Ed.), Visualization in Biomedical Computing 1994. Vol 2359 of Proc. SPIE, 160–169, 1994. MacDonald, D., Avis, D., & Evans, A. E. (1994). Multiple surface identification and matching in magnetic resonance images. In R. A. Robb (Ed.), Visualization in Biomedical Computing 1994. Vol 2359 of Proc. SPIE, 160–169, 1994.
Zurück zum Zitat Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403.PubMedCrossRef Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403.PubMedCrossRef
Zurück zum Zitat Mangin, J.-F., Poupon, F., Duchesnay, E., Riviere, D., Cachia, A., Collins, D. L., et al. (2004). Brain morphometry using 3D moment invariants. Medical Image Analysis, 8, 187–196.PubMedCrossRef Mangin, J.-F., Poupon, F., Duchesnay, E., Riviere, D., Cachia, A., Collins, D. L., et al. (2004). Brain morphometry using 3D moment invariants. Medical Image Analysis, 8, 187–196.PubMedCrossRef
Zurück zum Zitat Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage, 2, 89–101.PubMedCrossRef Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage, 2, 89–101.PubMedCrossRef
Zurück zum Zitat Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2002). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London, 356, 1293–1322.CrossRef Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2002). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London, 356, 1293–1322.CrossRef
Zurück zum Zitat Narr, K. L., Cannon, T. D., Woods, R. P., Thompson, P. M., Kim, S., Asunction, D., et al. (2002). Genetic contributions to altered callosal morphology in schizophrenia. Journal of Neuroscience, 22(9), 3720–3729.PubMed Narr, K. L., Cannon, T. D., Woods, R. P., Thompson, P. M., Kim, S., Asunction, D., et al. (2002). Genetic contributions to altered callosal morphology in schizophrenia. Journal of Neuroscience, 22(9), 3720–3729.PubMed
Zurück zum Zitat Powell, S., Magnotta, V. A., Johnson, H., Jammalamadaka, V. K., Pierson, R., & Andreason, N. C. (2008). Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage, 39, 238–247.PubMedCrossRef Powell, S., Magnotta, V. A., Johnson, H., Jammalamadaka, V. K., Pierson, R., & Andreason, N. C. (2008). Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage, 39, 238–247.PubMedCrossRef
Zurück zum Zitat Schormann, T., & Zilles, K. (1997). Limitations of the principal-axis theory. IEEE Transactions on Medical Imaging, 16, 942–947.PubMedCrossRef Schormann, T., & Zilles, K. (1997). Limitations of the principal-axis theory. IEEE Transactions on Medical Imaging, 16, 942–947.PubMedCrossRef
Zurück zum Zitat Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., et al. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39, 1064–1080.PubMedCrossRef Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., et al. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39, 1064–1080.PubMedCrossRef
Zurück zum Zitat Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192.PubMed Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192.PubMed
Zurück zum Zitat Thompson, P. M., Cannon, T. D., Narr, K. L., Van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4(12), 1253–1258.PubMedCrossRef Thompson, P. M., Cannon, T. D., Narr, K. L., Van Erp, T., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4(12), 1253–1258.PubMedCrossRef
Zurück zum Zitat Toga, A. W., & Banerjee, O. K. (1993). Registration revisited. Journal of Neuroscience Methods, 48, 1–13.PubMedCrossRef Toga, A. W., & Banerjee, O. K. (1993). Registration revisited. Journal of Neuroscience Methods, 48, 1–13.PubMedCrossRef
Metadaten
Titel
Automated Analysis of Fundamental Features of Brain Structures
verfasst von
Jack L. Lancaster
D. Reese McKay
Matthew D. Cykowski
Michael J. Martinez
Xi Tan
Sunil Valaparla
Yi Zhang
Peter T. Fox
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 4/2011
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-011-9108-z

Weitere Artikel der Ausgabe 4/2011

Neuroinformatics 4/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.