Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2017

27.07.2017 | NON-THEMATIC REVIEW

Breast cancer complexity: implications of intratumoral heterogeneity in clinical management

verfasst von: Brittany Haynes, Ashapurna Sarma, Pratima Nangia-Makker, Malathy P. Shekhar

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Generation of intratumoral phenotypic and genetic heterogeneity has been attributed to clonal evolution and cancer stem cells that together give rise to a tumor with complex ecosystems. Each ecosystem contains various tumor cell subpopulations and stromal entities, which, depending upon their composition, can influence survival, therapy responses, and global growth of the tumor. Despite recent advances in breast cancer management, the disease has not been completely eradicated as tumors recur despite initial response to treatment. In this review, using data from clinically relevant breast cancer models, we show that the fates of tumor stem cells/progenitor cells in the individual tumor ecosystems comprising a tumor are predetermined to follow a limited (unipotent) and/or unlimited (multipotent) path of differentiation which create conditions for active generation and maintenance of heterogeneity. The resultant dynamic systems respond differently to treatments, thus disrupting the delicate stability maintained in the heterogeneous tumor. This raises the question whether it is better then to preserve stability by preventing takeover by otherwise dormant ecosystems in the tumor following therapy. The ultimate strategy for personalized therapy would require serial assessments of the patient’s tumor for biomarker validation during the entire course of treatment that is combined with their three-dimensional mapping to the tumor architecture and landscape.
Literatur
1.
Zurück zum Zitat Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38, 2651–2660.PubMed Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38, 2651–2660.PubMed
2.
Zurück zum Zitat Heppner, G. H., & Miller, B. E. (1983). Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Reviews, 2, 5–23.CrossRefPubMed Heppner, G. H., & Miller, B. E. (1983). Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Reviews, 2, 5–23.CrossRefPubMed
3.
Zurück zum Zitat Dexter, D. L., Kowalski, H. M., Blazar, B. A., Fligiel, Z., Vogel, R., & Heppner, G. H. (1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Research, 38, 3174–3181.PubMed Dexter, D. L., Kowalski, H. M., Blazar, B. A., Fligiel, Z., Vogel, R., & Heppner, G. H. (1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Research, 38, 3174–3181.PubMed
4.
Zurück zum Zitat Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nature Reviews Cancer, 12, 323–334.CrossRefPubMed Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nature Reviews Cancer, 12, 323–334.CrossRefPubMed
5.
6.
Zurück zum Zitat Heppner, G. H., & Miller, F. R. (1998). The cellular basis of tumor progression. International Reviews in Cytology, 177, 1–56. Heppner, G. H., & Miller, F. R. (1998). The cellular basis of tumor progression. International Reviews in Cytology, 177, 1–56.
7.
Zurück zum Zitat Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.CrossRefPubMed Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.CrossRefPubMed
8.
Zurück zum Zitat Wolman, S. R., & Heppner, G. H. (1992). Genetic heterogeneity in breast cancer. Journal of National Cancer Institute, 84, 469–470.CrossRef Wolman, S. R., & Heppner, G. H. (1992). Genetic heterogeneity in breast cancer. Journal of National Cancer Institute, 84, 469–470.CrossRef
9.
Zurück zum Zitat Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta, 1805, 105–117.PubMed Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta, 1805, 105–117.PubMed
10.
Zurück zum Zitat Janiszewska, M., & Polyak, K. (2015). Clonal evolution in cancer: a tale of twisted twines. Cell Stem Cell, 16, 11–12.CrossRefPubMed Janiszewska, M., & Polyak, K. (2015). Clonal evolution in cancer: a tale of twisted twines. Cell Stem Cell, 16, 11–12.CrossRefPubMed
11.
Zurück zum Zitat Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.CrossRefPubMed Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.CrossRefPubMed
12.
Zurück zum Zitat Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., & Terzis, A. J. (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Reviews Cancer, 5, 899–904.CrossRefPubMed Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., & Terzis, A. J. (2005). Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Reviews Cancer, 5, 899–904.CrossRefPubMed
13.
Zurück zum Zitat Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.CrossRefPubMed Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.CrossRefPubMed
14.
Zurück zum Zitat Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275–291.CrossRefPubMed Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275–291.CrossRefPubMed
15.
Zurück zum Zitat Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical Chemistry, 59, 168–179.CrossRefPubMed Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical Chemistry, 59, 168–179.CrossRefPubMed
16.
Zurück zum Zitat Elshamy, W. M., & Duhe, R. J. (2013). Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Letters, 341, 2–8.CrossRefPubMed Elshamy, W. M., & Duhe, R. J. (2013). Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Letters, 341, 2–8.CrossRefPubMed
17.
Zurück zum Zitat Rhiannon, F., & Richard, C. (2012). The complex nature of breast cancer stem-like cells: heterogeneity and plasticity. Journal of Stem Cells Research and Therapy. doi:10.4172/2157-7633.S7-009. Rhiannon, F., & Richard, C. (2012). The complex nature of breast cancer stem-like cells: heterogeneity and plasticity. Journal of Stem Cells Research and Therapy. doi:10.​4172/​2157-7633.​S7-009.
18.
Zurück zum Zitat Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., & Heppner, G. H. (1993). Xenograft model of progressive human proliferative breast disease. Journal of National Cancer Institute, 85, 1725–1732.CrossRef Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., & Heppner, G. H. (1993). Xenograft model of progressive human proliferative breast disease. Journal of National Cancer Institute, 85, 1725–1732.CrossRef
19.
Zurück zum Zitat Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5, 379–391.CrossRefPubMed Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5, 379–391.CrossRefPubMed
20.
Zurück zum Zitat Shekhar, M. P., Nangia-Makker, P., Wolman, S. R., Tait, L., Heppner, G. H., & Visscher, D. W. (1998). Direct action of estrogen on sequence of progression of human preneoplastic breast disease. American Journal of Pathology, 152, 1129–1132.PubMedPubMedCentral Shekhar, M. P., Nangia-Makker, P., Wolman, S. R., Tait, L., Heppner, G. H., & Visscher, D. W. (1998). Direct action of estrogen on sequence of progression of human preneoplastic breast disease. American Journal of Pathology, 152, 1129–1132.PubMedPubMedCentral
21.
Zurück zum Zitat Shekhar, P. V., Chen, M. L., Werdell, J., Heppner, G. H., Miller, F. R., & Christman, J. K. (1998). Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: a model for early breast cancer. International Journal of Oncology, 13, 907–915.PubMed Shekhar, P. V., Chen, M. L., Werdell, J., Heppner, G. H., Miller, F. R., & Christman, J. K. (1998). Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: a model for early breast cancer. International Journal of Oncology, 13, 907–915.PubMed
22.
Zurück zum Zitat Visscher, D. W., Nanjia-Makker, P., Heppner, G., & Shekhar, P. V. (2001). Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Research & Treatment, 65, 41–47.CrossRef Visscher, D. W., Nanjia-Makker, P., Heppner, G., & Shekhar, P. V. (2001). Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Research & Treatment, 65, 41–47.CrossRef
23.
Zurück zum Zitat Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of National Academy of Sciences U S A, 100, 3983–3988.CrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of National Academy of Sciences U S A, 100, 3983–3988.CrossRef
24.
Zurück zum Zitat Shekhar, M. P., & Tait, L. Breast cancer stem cell paradigm. In D. W. Parsons (Ed.), Stem cells and cancer (pp. 47–64). New York: Nova Science. Shekhar, M. P., & Tait, L. Breast cancer stem cell paradigm. In D. W. Parsons (Ed.), Stem cells and cancer (pp. 47–64). New York: Nova Science.
25.
Zurück zum Zitat Liu, Y., Nenutil, R., Appleyard, M. V., Murray, K., Boylan, M., Thompson, A. M., & Coates, P. J. (2014). Lack of correlation of stem cell markers in breast cancer stem cells. British Journal of Cancer, 110, 2063–2071.CrossRefPubMedPubMedCentral Liu, Y., Nenutil, R., Appleyard, M. V., Murray, K., Boylan, M., Thompson, A. M., & Coates, P. J. (2014). Lack of correlation of stem cell markers in breast cancer stem cells. British Journal of Cancer, 110, 2063–2071.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Miller, F. R., Santner, S. J., Tait, L., & Dawson, P. J. (2000). MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. Journal of National Cancer Institute, 92, 1185–1186.CrossRef Miller, F. R., Santner, S. J., Tait, L., & Dawson, P. J. (2000). MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. Journal of National Cancer Institute, 92, 1185–1186.CrossRef
27.
Zurück zum Zitat Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research & Treatment, 65, 101–110.CrossRef Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research & Treatment, 65, 101–110.CrossRef
28.
Zurück zum Zitat Guo, W., Keckesova, Z., Donaher, J. L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zürrer-Härdi, U., Bell, G., Tam, W. L., Mani, S. A., van Oudenaarden, A., & Weinberg, R. A. (2012). Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 148, 1015–1028.CrossRefPubMedPubMedCentral Guo, W., Keckesova, Z., Donaher, J. L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zürrer-Härdi, U., Bell, G., Tam, W. L., Mani, S. A., van Oudenaarden, A., & Weinberg, R. A. (2012). Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 148, 1015–1028.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Shekhar, M. P., Kato, I., Nangia-Makker, P., & Tait, L. (2013). Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup. Oncotarget, 4, 231–241.CrossRefPubMedPubMedCentral Shekhar, M. P., Kato, I., Nangia-Makker, P., & Tait, L. (2013). Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup. Oncotarget, 4, 231–241.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hannemann, J., Velds, A., Halfwerk, J. B., Kreike, B., Peterse, J. L., & van de Vijver, M. J. (2006). Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Research, 8, R61.CrossRefPubMedPubMedCentral Hannemann, J., Velds, A., Halfwerk, J. B., Kreike, B., Peterse, J. L., & van de Vijver, M. J. (2006). Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Research, 8, R61.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Yu, K., Lee, C. H., Tan, P. H., & Tan, P. (2004). Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clinical Cancer Research, 10, 5508–5517.CrossRefPubMed Yu, K., Lee, C. H., Tan, P. H., & Tan, P. (2004). Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clinical Cancer Research, 10, 5508–5517.CrossRefPubMed
32.
Zurück zum Zitat Bryan, B. B., Schnitt, S. J., & Collins, L. C. (2006). Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern Pathology, 19, 617–621.CrossRefPubMed Bryan, B. B., Schnitt, S. J., & Collins, L. C. (2006). Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Modern Pathology, 19, 617–621.CrossRefPubMed
33.
Zurück zum Zitat Dabbs, D. J., Chivukula, M., Carter, G., & Bhargava, R. (2006). Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Modern Pathology, 19, 1506–1511.CrossRefPubMed Dabbs, D. J., Chivukula, M., Carter, G., & Bhargava, R. (2006). Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Modern Pathology, 19, 1506–1511.CrossRefPubMed
34.
Zurück zum Zitat Livasy, C. A., Perou, C. M., Karaca, G., Cowan, D. W., Maia, D., Jackson, S., Tse, C. K., Nyante, S., & Millikan, R. C. (2007). Identification of a basal-like subtype of breast ductal carcinoma in situ. Human Pathology, 38, 197–204.CrossRefPubMed Livasy, C. A., Perou, C. M., Karaca, G., Cowan, D. W., Maia, D., Jackson, S., Tse, C. K., Nyante, S., & Millikan, R. C. (2007). Identification of a basal-like subtype of breast ductal carcinoma in situ. Human Pathology, 38, 197–204.CrossRefPubMed
35.
Zurück zum Zitat Paredes, J., Lopes, N., Milanezi, F., & Schmitt, F. C. (2007). P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ. Virchows Archives, 450, 73–80.CrossRef Paredes, J., Lopes, N., Milanezi, F., & Schmitt, F. C. (2007). P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ. Virchows Archives, 450, 73–80.CrossRef
36.
Zurück zum Zitat Tang, P., Wang, X., Schiffhauer, L., Wang, J., Bourne, P., Yang, Q., Quinn, A., & Hajdu, S. I. (2006). Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Annals of Clinical Laboratory Science, 36, 16–22.PubMed Tang, P., Wang, X., Schiffhauer, L., Wang, J., Bourne, P., Yang, Q., Quinn, A., & Hajdu, S. I. (2006). Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Annals of Clinical Laboratory Science, 36, 16–22.PubMed
37.
Zurück zum Zitat Bertucci, F., Finetti, P., & Birnbaum, D. (2012). Basal breast cancer: a complex and deadly molecular subtype. Current Molecular Medicine, 12, 96–110.CrossRefPubMedPubMedCentral Bertucci, F., Finetti, P., & Birnbaum, D. (2012). Basal breast cancer: a complex and deadly molecular subtype. Current Molecular Medicine, 12, 96–110.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.CrossRefPubMed Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.CrossRefPubMed
39.
Zurück zum Zitat Hanley, C. J., Noble, F., Ward, M., Bullock, M., Drifka, C., Mellone, M., Manousopoulou, A., Johnston, H. E., Hayden, A., Thirdborough, S., Liu, Y., Smith, D. M., Mellows, T., Kao, W. J., Garbis, S. D., Mirnezami, A., Underwood, T. J., Eliceiri, K. W., & Thomas, G. J. (2016). A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget, 7, 6159–6174.CrossRefPubMed Hanley, C. J., Noble, F., Ward, M., Bullock, M., Drifka, C., Mellone, M., Manousopoulou, A., Johnston, H. E., Hayden, A., Thirdborough, S., Liu, Y., Smith, D. M., Mellows, T., Kao, W. J., Garbis, S. D., Mirnezami, A., Underwood, T. J., Eliceiri, K. W., & Thomas, G. J. (2016). A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget, 7, 6159–6174.CrossRefPubMed
40.
Zurück zum Zitat He, K., Lv, W., Zheng, D., Cheng, F., Zhou, T., Ye, S., Ban, Q., Ying, Q., Huang, B., Chen, L., Wu, G., & Liu, D. (2015). The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis. Oncotarget, 6, 8687–8697.CrossRefPubMedPubMedCentral He, K., Lv, W., Zheng, D., Cheng, F., Zhou, T., Ye, S., Ban, Q., Ying, Q., Huang, B., Chen, L., Wu, G., & Liu, D. (2015). The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis. Oncotarget, 6, 8687–8697.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Junk, D. J., Cipriano, R., Bryson, B. L., Gilmore, H. L., & Jackson, M. W. (2013). Tumor microenvironmental signaling elicits epithelial-mesenchymal plasticity through cooperation with transforming genetic events. Neoplasia, 15, 1100–1109.CrossRefPubMedPubMedCentral Junk, D. J., Cipriano, R., Bryson, B. L., Gilmore, H. L., & Jackson, M. W. (2013). Tumor microenvironmental signaling elicits epithelial-mesenchymal plasticity through cooperation with transforming genetic events. Neoplasia, 15, 1100–1109.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Natrajan, R., Sailem, H., Mardakheh, F. K., Arias Garcia, M., Tape, C. J., Dowsett, M., Bakal, C., & Yuan, Y. (2016). Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis. PLoS Medicine, 13, e1001961.CrossRefPubMedPubMedCentral Natrajan, R., Sailem, H., Mardakheh, F. K., Arias Garcia, M., Tape, C. J., Dowsett, M., Bakal, C., & Yuan, Y. (2016). Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis. PLoS Medicine, 13, e1001961.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Roman-Perez, E., Casbas-Hernandez, P., Pirone, J. R., Rein, J., Carey, L. A., Lubet, R. A., Mani, S. A., Amos, K. D., & Troester, M. A. (2012). Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14, R51.CrossRefPubMedPubMedCentral Roman-Perez, E., Casbas-Hernandez, P., Pirone, J. R., Rein, J., Carey, L. A., Lubet, R. A., Mani, S. A., Amos, K. D., & Troester, M. A. (2012). Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14, R51.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Sugimoto, H., Mundel, T. M., Kieran, M. W., & Kalluri, R. (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy, 5, 1640–1646.CrossRef Sugimoto, H., Mundel, T. M., Kieran, M. W., & Kalluri, R. (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy, 5, 1640–1646.CrossRef
45.
Zurück zum Zitat Shekhar, M. P., Werdell, J., Santner, S. J., Pauley, R. J., & Tait, L. (2001). Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Research, 61, 1320–1326.PubMed Shekhar, M. P., Werdell, J., Santner, S. J., Pauley, R. J., & Tait, L. (2001). Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Research, 61, 1320–1326.PubMed
46.
Zurück zum Zitat Shekhar, M. P., Santner, S., Carolin, K. A., & Tait, L. (2007). Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. American Journal Pathology, 170, 1546–1560.CrossRef Shekhar, M. P., Santner, S., Carolin, K. A., & Tait, L. (2007). Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. American Journal Pathology, 170, 1546–1560.CrossRef
47.
Zurück zum Zitat Harahap, W.A., Daan Khambri, R., Haryono, S., & Nindrea, R.D. (2017). Outcomes of trastuzumab therapy for 6 and 12 months in Indonesian national health insurance system clients with operable HER2-positive breast cancer. Asian Pacific Journal of Cancer Prevention, 18, 1151–1156. Harahap, W.A., Daan Khambri, R., Haryono, S., & Nindrea, R.D. (2017). Outcomes of trastuzumab therapy for 6 and 12 months in Indonesian national health insurance system clients with operable HER2-positive breast cancer. Asian Pacific Journal of Cancer Prevention, 18, 1151–1156.
48.
Zurück zum Zitat Cheng, Y. C., Shi, Y., Zhang, M. J., Brazauskas, R., Hemmer, M. T., Bishop, M. R., Nieto, Y., Stadtmauer, E., Ayash, L., Gale, R. P., Lazarus, H., Holmberg, L., Lill, M., Olsson, R. F., Wirk, B. M., Arora, M., Hari, P., & Ueno, N. (2017). Long-term outcome of inflammatory breast cancer compared to non-inflammatory breast cancer in the setting of high-dose chemotherapy with autologous hematopoietic cell transplantation. Journal of Cancer, 8, 1009–1017.CrossRefPubMedPubMedCentral Cheng, Y. C., Shi, Y., Zhang, M. J., Brazauskas, R., Hemmer, M. T., Bishop, M. R., Nieto, Y., Stadtmauer, E., Ayash, L., Gale, R. P., Lazarus, H., Holmberg, L., Lill, M., Olsson, R. F., Wirk, B. M., Arora, M., Hari, P., & Ueno, N. (2017). Long-term outcome of inflammatory breast cancer compared to non-inflammatory breast cancer in the setting of high-dose chemotherapy with autologous hematopoietic cell transplantation. Journal of Cancer, 8, 1009–1017.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Nasir, A., Holzer, T. R., Chen, M., Man, M. Z., & Schade, A. E. (2017). Differential expression of VEGFR2 protein in HER2 positive primary human breast cancer: potential relevance to anti-angiogenic therapies. Cancer Cell International, 17, 56.CrossRefPubMedPubMedCentral Nasir, A., Holzer, T. R., Chen, M., Man, M. Z., & Schade, A. E. (2017). Differential expression of VEGFR2 protein in HER2 positive primary human breast cancer: potential relevance to anti-angiogenic therapies. Cancer Cell International, 17, 56.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Rier, H. N., Levin, M. D., van Rosmalen, J., Bos, M., Drooger, J. C., de Jong, P., Portielje, J.E.A., Elsten, E.M.P., Ten Tije, A.J., Sleijfer, S., & Jager, A. (2017). First-line palliative HER2-targeted therapy in HER2-positive metastatic breast cancer is less effective after previous adjuvant trastuzumab-based therapy. Oncologist. doi:10.1634/the oncologist.2016-0448. Rier, H. N., Levin, M. D., van Rosmalen, J., Bos, M., Drooger, J. C., de Jong, P., Portielje, J.E.A., Elsten, E.M.P., Ten Tije, A.J., Sleijfer, S., & Jager, A. (2017). First-line palliative HER2-targeted therapy in HER2-positive metastatic breast cancer is less effective after previous adjuvant trastuzumab-based therapy. Oncologist. doi:10.​1634/​the oncologist.​2016-0448.
51.
Zurück zum Zitat Yu, X., Wang, L., Shen, Y., Wang, C., Zhang, Y., Meng, Y., Yang, Y., Liang, B., Zhou, B., Wang, H., Wei, H., Lei, C., Hu, S., & Li, B. (2017). Targeting EGFR/HER2 heterodimerization with a novel anti-HER2 domain II/III antibody. Molecular Immunology, 87, 300–307.CrossRefPubMed Yu, X., Wang, L., Shen, Y., Wang, C., Zhang, Y., Meng, Y., Yang, Y., Liang, B., Zhou, B., Wang, H., Wei, H., Lei, C., Hu, S., & Li, B. (2017). Targeting EGFR/HER2 heterodimerization with a novel anti-HER2 domain II/III antibody. Molecular Immunology, 87, 300–307.CrossRefPubMed
52.
Zurück zum Zitat Drakaki, A., & Hurvitz, S.A. (2015). Her2-positive breast cancer: Update on new and emerging agents. The American Journal of Hematology/Oncology, 11, 17-23. Drakaki, A., & Hurvitz, S.A. (2015). Her2-positive breast cancer: Update on new and emerging agents. The American Journal of Hematology/Oncology, 11, 17-23.
53.
Zurück zum Zitat Dickler, M. N., Tolaney, S., Rugo, H. S., Cortes, J., Dieras, V., Patt, D. A., Wildiers, H., Hudis, C. A., O, Shaughnessy, J. A., Zamora, E., Yardley, D., Frenzel, M., Koustenis, A. G., & Baselga, J. (2017). MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-17-0754 Epub ahead of print. Dickler, M. N., Tolaney, S., Rugo, H. S., Cortes, J., Dieras, V., Patt, D. A., Wildiers, H., Hudis, C. A., O, Shaughnessy, J. A., Zamora, E., Yardley, D., Frenzel, M., Koustenis, A. G., & Baselga, J. (2017). MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clinical Cancer Research. doi:10.​1158/​1078-0432.​CCR-17-0754 Epub ahead of print.
54.
Zurück zum Zitat Dean, L. (2012). Pertuzumab therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information. Dean, L. (2012). Pertuzumab therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.
55.
Zurück zum Zitat Dean, L. (2012). Trastuzumab (herceptin) therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information. Dean, L. (2012). Trastuzumab (herceptin) therapy and ERBB2 (HER2) genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.
56.
Zurück zum Zitat Dean, L. (2012). Tamoxifen therapy and CYP2D6 genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information. Dean, L. (2012). Tamoxifen therapy and CYP2D6 genotype. In V. Pratt, H. McLeod, L. Dean, A. Malheiro, & W. Rubinstein (Eds.), Medical genetics summaries. Bethesda: National Center for Biotechnology Information.
57.
Zurück zum Zitat Gu, G., Dustin, D., & Fuqua, S. A. (2016). Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Current Opinion in Pharmacology, 31, 97–103.CrossRefPubMed Gu, G., Dustin, D., & Fuqua, S. A. (2016). Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Current Opinion in Pharmacology, 31, 97–103.CrossRefPubMed
58.
Zurück zum Zitat Yap, T. A., Omlin, A., & de Bono, J. S. (2013). Development of therapeutic combinations targeting major cancer signaling pathways. Journal of Clinical Oncology, 31, 1592–1605.CrossRefPubMed Yap, T. A., Omlin, A., & de Bono, J. S. (2013). Development of therapeutic combinations targeting major cancer signaling pathways. Journal of Clinical Oncology, 31, 1592–1605.CrossRefPubMed
59.
Zurück zum Zitat Tryfonidis, K., Senkus, E., Cardoso, M. J., & Cardoso, F. (2015). Management of locally advanced breast cancer—perspectives and future directions. Nature Reviews Clinical Oncology, 12, 147–162.CrossRefPubMed Tryfonidis, K., Senkus, E., Cardoso, M. J., & Cardoso, F. (2015). Management of locally advanced breast cancer—perspectives and future directions. Nature Reviews Clinical Oncology, 12, 147–162.CrossRefPubMed
60.
Zurück zum Zitat Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncology, 17, 425–439.CrossRefPubMed Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncology, 17, 425–439.CrossRefPubMed
61.
Zurück zum Zitat Swain, S. M., Baselga, J., Kim, S. B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J. M., Schneeweiss, A., Heeson, S., Clark, E., Ross, G., Benyunes, M. C., Cortés, J., & CLEOPATRA Study Group. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372, 724–734.CrossRefPubMedPubMedCentral Swain, S. M., Baselga, J., Kim, S. B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J. M., Schneeweiss, A., Heeson, S., Clark, E., Ross, G., Benyunes, M. C., Cortés, J., & CLEOPATRA Study Group. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372, 724–734.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Ates, O., Sunar, V., Aslan, A., Karatas, F., Sahin, S., & Altundag, K. (2017). The short-term safety of adjuvant paclitaxel plus trastuzumab—a single centre experience. J Balkan Union of Oncology, 22, 320–324. Ates, O., Sunar, V., Aslan, A., Karatas, F., Sahin, S., & Altundag, K. (2017). The short-term safety of adjuvant paclitaxel plus trastuzumab—a single centre experience. J Balkan Union of Oncology, 22, 320–324.
63.
Zurück zum Zitat Liu, Z., He, K., Ma, Q., Yu, Q., Liu, C., Ndege, I., Wang, X., & Yu, Z. (2017). Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One, 12(5), e0177694.CrossRefPubMedPubMedCentral Liu, Z., He, K., Ma, Q., Yu, Q., Liu, C., Ndege, I., Wang, X., & Yu, Z. (2017). Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One, 12(5), e0177694.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Di Nicolantonio, F., Mercer, S. J., Knight, L. A., Gabriel, F. G., Whitehouse, P. A., Sharma, S., Fernando, A., Glaysher, S., Di Palma, S., Johnson, P., Somers, S. S., Toh, S., Higgins, B., Lamont, A., Gulliford, T., Hurren, J., Yiangou, C., & Cree, I. A. (2005). Cancer cell adaptation to chemotherapy. BMC Cancer, 5, 78.CrossRefPubMedPubMedCentral Di Nicolantonio, F., Mercer, S. J., Knight, L. A., Gabriel, F. G., Whitehouse, P. A., Sharma, S., Fernando, A., Glaysher, S., Di Palma, S., Johnson, P., Somers, S. S., Toh, S., Higgins, B., Lamont, A., Gulliford, T., Hurren, J., Yiangou, C., & Cree, I. A. (2005). Cancer cell adaptation to chemotherapy. BMC Cancer, 5, 78.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Tan, S. H., Sapari, N. S., Miao, H., Hartman, M., Loh, M., Chng, W. J., Iau, P., Buhari, S. A., Soong, R., & Lee, S. C. (2015). High-throughput mutation profiling changes before and 3 weeks after chemotherapy in newly diagnosed breast cancer patients. PLoS One, 10, e0142466.CrossRefPubMedPubMedCentral Tan, S. H., Sapari, N. S., Miao, H., Hartman, M., Loh, M., Chng, W. J., Iau, P., Buhari, S. A., Soong, R., & Lee, S. C. (2015). High-throughput mutation profiling changes before and 3 weeks after chemotherapy in newly diagnosed breast cancer patients. PLoS One, 10, e0142466.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Murphy, C., & Dickler, M. (2016). Endocrine resistance in hormone responsive breast cancer: mechanisms and therapeutic strategies. Endocrine Related Cancer, 23, R337-352. Murphy, C., & Dickler, M. (2016). Endocrine resistance in hormone responsive breast cancer: mechanisms and therapeutic strategies. Endocrine Related Cancer, 23, R337-352.
68.
Zurück zum Zitat Ter Brugge, P., Kristel, P., van der Burg, E., Boon, U., de Maaker, M., Lips, E., Mulder, L., de Ruiter, J., Moutinho, C., Gevensleben, H., Marangoni, E., Majewski, I., Józwiak, K., Kloosterman, W., van Roosmalen, M., Duran, K., Hogervorst, F., Turner, N., Esteller, M., Cuppen, E., Wesseling, J., & Jonkers, J. (2016). Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. Journal of National Cancer Institute, 108, djw148. doi:10.1093/jnci/djw148.CrossRef Ter Brugge, P., Kristel, P., van der Burg, E., Boon, U., de Maaker, M., Lips, E., Mulder, L., de Ruiter, J., Moutinho, C., Gevensleben, H., Marangoni, E., Majewski, I., Józwiak, K., Kloosterman, W., van Roosmalen, M., Duran, K., Hogervorst, F., Turner, N., Esteller, M., Cuppen, E., Wesseling, J., & Jonkers, J. (2016). Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. Journal of National Cancer Institute, 108, djw148. doi:10.​1093/​jnci/​djw148.CrossRef
69.
Zurück zum Zitat Edwards, S. L., Brough, R., Lord, C. J., Natrajan, R., Vatcheva, R., Levine, D. A., Boyd, J., Reis-Filho, J. S., & Ashworth, A. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 451, 1111–1115.CrossRefPubMed Edwards, S. L., Brough, R., Lord, C. J., Natrajan, R., Vatcheva, R., Levine, D. A., Boyd, J., Reis-Filho, J. S., & Ashworth, A. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 451, 1111–1115.CrossRefPubMed
70.
Zurück zum Zitat Sakai, W., Swisher, E. M., Karlan, B. Y., Agarwal, M. K., Higgins, J., Friedman, C., Villegas, E., Jacquemont, C., Farrugia, D. J., Couch, F. J., Urban, N., & Taniguchi, T. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 451, 1116–1120.CrossRefPubMedPubMedCentral Sakai, W., Swisher, E. M., Karlan, B. Y., Agarwal, M. K., Higgins, J., Friedman, C., Villegas, E., Jacquemont, C., Farrugia, D. J., Couch, F. J., Urban, N., & Taniguchi, T. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 451, 1116–1120.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., Rimm, D. L., Wong, H., Rodriguez, A., Herschkowitz, J. I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M. C., Renshaw, L., Larionov, A. A., Faratian, D., Hilsenbeck, S. G., Perou, C. M., Lewis, M. T., Rosen, J. M., & Chang, J. C. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of National Academy of Sciences U S A, 106, 13820–13825.CrossRef Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., Rimm, D. L., Wong, H., Rodriguez, A., Herschkowitz, J. I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M. C., Renshaw, L., Larionov, A. A., Faratian, D., Hilsenbeck, S. G., Perou, C. M., Lewis, M. T., Rosen, J. M., & Chang, J. C. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of National Academy of Sciences U S A, 106, 13820–13825.CrossRef
72.
Zurück zum Zitat Leder, K., Holland, E. C., & Michor, F. (2010). The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One, 5, e14366.CrossRefPubMedPubMedCentral Leder, K., Holland, E. C., & Michor, F. (2010). The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One, 5, e14366.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C., Wong, H., Rosen, J., & Chang, J. C. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of National Cancer Institute, 100, 672–679.CrossRef Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C., Wong, H., Rosen, J., & Chang, J. C. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of National Cancer Institute, 100, 672–679.CrossRef
74.
Zurück zum Zitat Iwasa, Y., Nowak, M. A., & Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics, 174, 2557–2566. Iwasa, Y., Nowak, M. A., & Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics, 174, 2557–2566.
75.
Zurück zum Zitat Zhou, X., Zhang, J., Yun, H., Shi, R., Wang, Y., Wang, W., Lagercrantz, S. B., & Mu, K. (2015). Alterations of biomarker profiles after neoadjuvant chemotherapy in breast cancer: tumor heterogeneity should be taken into consideration. Oncotarget, 6, 36894–36902.PubMedPubMedCentral Zhou, X., Zhang, J., Yun, H., Shi, R., Wang, Y., Wang, W., Lagercrantz, S. B., & Mu, K. (2015). Alterations of biomarker profiles after neoadjuvant chemotherapy in breast cancer: tumor heterogeneity should be taken into consideration. Oncotarget, 6, 36894–36902.PubMedPubMedCentral
76.
Zurück zum Zitat Miller, B. E., Miller, F. R., Wilburn, D., & Heppner, G. H. (1988). Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Research, 48, 5747–5753.PubMed Miller, B. E., Miller, F. R., Wilburn, D., & Heppner, G. H. (1988). Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Research, 48, 5747–5753.PubMed
77.
Zurück zum Zitat Crespi, B., Foster, K., & Ubeda, F. (2014). First principles of Hamiltonian medicine. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 369, 20130366.CrossRefPubMed Crespi, B., Foster, K., & Ubeda, F. (2014). First principles of Hamiltonian medicine. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 369, 20130366.CrossRefPubMed
78.
Zurück zum Zitat Gerard, B., Tait, L., Nangia-Makker, P., & Shekhar, M. P. (2011). Rad6B acts downstream of Wnt signaling to stabilize beta-catenin: implications for a novel Wnt/beta-catenin target. Journal of Molecular Signaling, 6, 6.CrossRefPubMedPubMedCentral Gerard, B., Tait, L., Nangia-Makker, P., & Shekhar, M. P. (2011). Rad6B acts downstream of Wnt signaling to stabilize beta-catenin: implications for a novel Wnt/beta-catenin target. Journal of Molecular Signaling, 6, 6.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Shekhar, M. P., Gerard, B., Pauley, R. J., Williams, B. O., & Tait, L. (2008). Rad6B is a positive regulator of beta-catenin stabilization. Cancer Research, 68, 1741–1750.CrossRefPubMed Shekhar, M. P., Gerard, B., Pauley, R. J., Williams, B. O., & Tait, L. (2008). Rad6B is a positive regulator of beta-catenin stabilization. Cancer Research, 68, 1741–1750.CrossRefPubMed
80.
Zurück zum Zitat Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 514, 54–58.CrossRefPubMedPubMedCentral Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 514, 54–58.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Parikh, J., Selmi, M., Charles-Edwards, G., Glendenning, J., Ganeshan, B., Verma, H., Mansi, J., Harries, M., Tutt, A., & Goh, V. (2014). Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology, 272, 100–112.CrossRefPubMed Parikh, J., Selmi, M., Charles-Edwards, G., Glendenning, J., Ganeshan, B., Verma, H., Mansi, J., Harries, M., Tutt, A., & Goh, V. (2014). Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology, 272, 100–112.CrossRefPubMed
Metadaten
Titel
Breast cancer complexity: implications of intratumoral heterogeneity in clinical management
verfasst von
Brittany Haynes
Ashapurna Sarma
Pratima Nangia-Makker
Malathy P. Shekhar
Publikationsdatum
27.07.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9684-y

Weitere Artikel der Ausgabe 3/2017

Cancer and Metastasis Reviews 3/2017 Zur Ausgabe

OriginalPaper

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.