Skip to main content
Erschienen in: Molecular Neurodegeneration 1/2013

Open Access 01.12.2013 | Editorial

Current concepts in Alzheimer’s Disease: molecules, models and translational perspectives

verfasst von: Bart PF Rutten, Harry WM Steinbusch

Erschienen in: Molecular Neurodegeneration | Ausgabe 1/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The field of neuroscience research in AD has been evolving rapidly over the last few years, and has pinpointed a number of candidate targets for molecules with crucial role in the pathophysiology of AD. Recent developments have furthermore enabled new ways of modeling the disease, while an increasing number of preclinically validated targets is currently being taken one step forward and tested in clinical trials. These recent developments are reviewed in the current Special Issues Series on “Current concepts in Alzheimer's disease research: molecules, models and translational perspectives” in a number of state-of-the-art manuscripts.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1326-8-33) contains supplementary material, which is available to authorized users.
Abkürzungen
Beta-amyloid
AD
Alzheimer’s disease
ApoE4
Apolipoprotein E4
APP
Amyloid precursor protein
CLU
Clusterin
CR1
Complement receptor 1
PICALM
PhosphatidylInositol-binding clathrin assembly protein
GWAS
Genome wide association studies
PS1
Presenilin 1
PS2
Presenilin 2.

Text

In October 2012, a three-day workshop on “Emerging Concepts in Alzheimer’s disease (AD)” was held in New Orleans as a Satellite Meeting to the 2012 Society for Neuroscience Meeting. The interactive workshop brought together senior and junior scientists from the entire world in a mixed format of interactive lectures and working groups of scientists assigned to jointly design innovative research projects, based on emerging concepts in AD as introduced in the lectures (Figure 1). The current Special issue Series in the journal is a direct product of the scientific exchange and discussions during the workshop. The Special Issue series comprises at least two Molecular Neurodegeneration editions with state-of-the-art review manuscripts by the teaching staff of the workshop, thereby covering various topics and concepts that were discussed during the workshop but also in post-workshop scientific exchanges between the participants, i.e. students and teaching staff.

Molecules

Besides the well-known connections of the rare mutations in genes encoding for amyloid precursor protein (APP) and the presenilins (PS1 and PS2), a large body of evidence implies a crucial role for apolipoprotein E4 allele (ApoE4) in the risk of AD, e.g. recent integrative genomic analyses have described a distinct ApoE4-associated molecular pathway that promotes late-onset AD [1]. Recent findings from large genome wide association studies (GWAS) have furthermore shown evidence for associations between common variants in a set of genes, among which CLU, CR1 and PICALM, and increased risk of sporadic AD [2, 3], while next generation sequencing technologies and detailed bioinformatic analyses have furthermore identified novel rare variants [4, 5]. Environmental factors such as a Mediterranean diet, physical exercise, and exposure to toxins have been associated with AD, and it is likely that environmental exposures during the entire lifespan interact with genetic susceptibility in bringing about AD in the elderly [6]. Neuropathological, genetic and molecular biologic evidence has thus accumulated over the last years, and has given rise to a neurobiological theory on the cascade of events with central roles for alterations in the processing and metabolism of APP and tau protein, resulting in aggregates of beta-amyloid (Aβ) fibrils and neurofibrillary tangles. The Aβ cascade hypothesis has been fuelled with biochemical studies in vitro and in vivo studies on toxic properties of the different conformational and differently polymerized states of Aβ aggregates, particularly at the synaptic level [7, 8], and has reached a more heuristic level with studies showing intricate crosstalk between misprocessing of beta-amyloid and tau proteins and neuroinflammation, ultimately disturbing neuronal and synaptic integrity and affecting cognitive functioning. A role for neuroinflammatory responses has been proposed in later phases of AD, but it has also been proposed that neuroinflammatory response act very early in the disease process by dysregulating mechanisms (for example at the level of the blood-brain barrier; [9]) to clear misfolded or damaged neuronal proteins [10, 11] and heavy metals [12]. Based on recent studies indicating that dynamic changes in epigenetic regulation of gene expression is involved in many human (patho)physiological processes including experience-dependent plasticity, neurogenesis and aging, research efforts have been launched for studying epigenetic involvement in AD-associated neurodegeneration and disturbances of neuroplasticity, see e.g. [13, 14]. Evidence from molecular and cellular studies have furthermore indicated that age-related changes in mitochondrial ATP production and oxidative stress are centrally involved in the pathophysiology of AD [15], while evidence reviewed by Walter et al. in the current issue suggests that membrane lipids are involved in the regulation of subcellular transport, activity, and metabolism of AD-related proteins, and that vice versa, APP and other AD-associated proteins impact on lipid metabolic pathways [16].

Models

It is clear that no animal model will ever fully capture the complex human spectrum of molecular, cellular and functional abnormalities as seen in patients with AD, albeit that the use of animal models has been of crucial importance for breakthroughs for our understanding of the pathophysiology of AD [17]. Thus, animal models have been necessary for the identification of causal relationships of AD-related molecules, but they also offer the possibilities for in vivo analyses of novel intervention strategies [18]. Although transgenic mouse strains of AD are used for the majority of animal studies in AD, recent advances in the field of transgenesis have resulted into a current wave of novel rat models of aberrant APP and tau processing, which (among other advantages) enable improved behavioral phenotyping [19]. The increasing demand for large and high-throughput toxicity screens have also strengthened a position for Drosophila melanogaster as a useful experimental animal species, and Pruessing et al. in the current issue review the current status of Drosophila studies in relation to AD [20]. Another model system with very high potential for AD research is the use of inducible pluripotent stem cells of AD patients for neuroscience research [21, 22], on which many developments are currently ongoing. Thus, modeling AD-related disturbances in neurobiological pathways using in vivo and in vitro models has undergone quite significant developments over the last few years.

Translational perspectives

Despite the important open questions and unresolved issues in elucidating the molecular and cellular mechanisms at hand in sporadic AD cases, the AD research field is very active (however not yet successful) in bringing about therapeutic interventions that can potentially be used in clinical practice.
For example, the field of immunotherapy in AD, after finding striking effects of vaccinations in mouse models, has been one of the prime areas for translational research on therapeutic interventions over the last few years. The current status of immunotherapy (with e.g. active and passive immunization strategies) in rodent and human AD studies is reviewed by Lemere [23], who argues that (the immunological) intervention efforts may need to be targeted to individuals at risk for AD, rather than to late stage AD patients that for being effective, which off course goes hand in hand with important ethical challenges.
To summarize, AD research is expanding rapidly and is reaching the phase in which findings from fundamental neuroscience drive the development of novel diagnostic and therapeutic strategies, hopefully resulting in useful clinical tools to improve prevention and treatment of this devastating neurodegenerative disorder in the not-too-distant future.

Acknowledgements

We thank the editors of journal Molecular Neurodegeneration for the invitation for this Special Issue Series, and particularly the authors of the review manuscripts for their efforts. We furthermore want to express our thanks to all participants of the workshop Sarah Hescham, Ted Wilson, Rebecca Skerrett, Ingrid Heggland, Tatiana Cerveira, Paulina Davis, Romina Gentier, Nellie Byun, Stefan Prokop, Rylan Allemang-Grand, Elizabeth Steuer, Julie Dela Cruz, Sandro Da Mesquita, Julie Savage, Jochen De Vry, Ginger Becker, Xenos Mason, Lionel Breuillaud, Sepideh Shokouhi, Kelly Miller, Fernanda Marques, Michelle Chua, Mai Panchal, Gwyneth Zakaib, Paul Coleman, Carol Colton, Claudio Cuello, Ilse Dewachter, William L. Klein, Ron De Kloet, Frank La Ferla, Jin-Moo Lee, Cindy Lemere, Mark Mattson, Joana Palha, Jőrg Bernard Schulz, Michael Sofroniew, Jochen Walter, Stacy Pagos Haller, Diane Bovenkamp and Guy Eakin for the inspiring and fruitful scientific discussions. We thank AlzForum for covering the workshop and their organization of a webinar on the outcome of the scientific discussion and assignments in the workshop. Financial support for the workshop “Emerging Concepts in Alzheimer’s disease” was provided by the International Stichting Alzheimer Onderzoek and the BrightFocus Foundation, of which the latter is also acknowledged for their additional support to aid funding of the publication costs associated with this special issue.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A: Integrative genomics identifies APOE epsilon4 effectors in Alzheimer’s disease. Nature. 2013, 500 (7460): 45-50. 10.1038/nature12415.CrossRefPubMed Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A: Integrative genomics identifies APOE epsilon4 effectors in Alzheimer’s disease. Nature. 2013, 500 (7460): 45-50. 10.1038/nature12415.CrossRefPubMed
2.
Zurück zum Zitat Tanzi RE: The genetics of alzheimer disease. Cold Spring Harb Perspect Med. 2012, 2 (10): Tanzi RE: The genetics of alzheimer disease. Cold Spring Harb Perspect Med. 2012, 2 (10):
3.
Zurück zum Zitat Ferrari R, Moreno JH, Minhajuddin AT, O’Bryant SE, Reisch JS, Barber RC, Momeni P: Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging. 2012, 33 (8): 1846-e1847. 1818PubMed Ferrari R, Moreno JH, Minhajuddin AT, O’Bryant SE, Reisch JS, Barber RC, Momeni P: Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging. 2012, 33 (8): 1846-e1847. 1818PubMed
4.
Zurück zum Zitat Bettens K, Brouwers N, Engelborghs S, Lambert JC, Rogaeva E, Vandenberghe R, Le Bastard N, Pasquier F, Vermeulen S, Van Dongen J, et al: Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased alzheimer risk. Mol Neurodegener. 2012, 7: 3-10.1186/1750-1326-7-3.PubMedCentralCrossRefPubMed Bettens K, Brouwers N, Engelborghs S, Lambert JC, Rogaeva E, Vandenberghe R, Le Bastard N, Pasquier F, Vermeulen S, Van Dongen J, et al: Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased alzheimer risk. Mol Neurodegener. 2012, 7: 3-10.1186/1750-1326-7-3.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, et al: TREM2 Variants in Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 117-127. 10.1056/NEJMoa1211851.PubMedCentralCrossRefPubMed Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, et al: TREM2 Variants in Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 117-127. 10.1056/NEJMoa1211851.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Chouliaras L, Sierksma AS, Kenis G, Prickaerts J, Lemmens MA, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, et al: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis. 2010, 2010: Chouliaras L, Sierksma AS, Kenis G, Prickaerts J, Lemmens MA, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, et al: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis. 2010, 2010:
7.
Zurück zum Zitat Klein WL: Synaptotoxic amyloid-beta oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer’s disease?. J Alzheimers Dis. 2013, 33 (Suppl 1): S49-65.PubMed Klein WL: Synaptotoxic amyloid-beta oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer’s disease?. J Alzheimers Dis. 2013, 33 (Suppl 1): S49-65.PubMed
8.
Zurück zum Zitat Krafft GA, Klein WL: ADDLs and the signaling web that leads to Alzheimer’s disease. Neuropharmacology. 2010, 59 (4–5): 230-242.CrossRefPubMed Krafft GA, Klein WL: ADDLs and the signaling web that leads to Alzheimer’s disease. Neuropharmacology. 2010, 59 (4–5): 230-242.CrossRefPubMed
9.
Zurück zum Zitat Marques F, Sousa JC, Sousa N, Palha JA: Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013, 8: 38-10.1186/1750-1326-8-38.PubMedCentralCrossRefPubMed Marques F, Sousa JC, Sousa N, Palha JA: Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013, 8: 38-10.1186/1750-1326-8-38.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Krstic D, Knuesel I: Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013, 9 (1): 25-34.CrossRefPubMed Krstic D, Knuesel I: Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013, 9 (1): 25-34.CrossRefPubMed
11.
Zurück zum Zitat Heneka MT, O’Banion MK: Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007, 184 (1–2): 69-91.CrossRefPubMed Heneka MT, O’Banion MK: Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007, 184 (1–2): 69-91.CrossRefPubMed
12.
Zurück zum Zitat Mesquita SD, Ferreira AC, Sousa JC, Santos NC, Correia-Neves M, Sousa N, Palha JA, Marques F: Modulation of iron metabolism in aging and in Alzheimer’s disease: relevance of the choroid plexus. Frontiers in cellular neuroscience. 2012, 6: 25-PubMedCentralCrossRefPubMed Mesquita SD, Ferreira AC, Sousa JC, Santos NC, Correia-Neves M, Sousa N, Palha JA, Marques F: Modulation of iron metabolism in aging and in Alzheimer’s disease: relevance of the choroid plexus. Frontiers in cellular neuroscience. 2012, 6: 25-PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL: Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol. 2010, 90 (4): 498-510. 10.1016/j.pneurobio.2010.01.002.CrossRefPubMed Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL: Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol. 2010, 90 (4): 498-510. 10.1016/j.pneurobio.2010.01.002.CrossRefPubMed
14.
Zurück zum Zitat Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD, Rutten BP, van den Hove DL: Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging. 2013, 34 (9): 2091-2099. 10.1016/j.neurobiolaging.2013.02.021.PubMedCentralCrossRefPubMed Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD, Rutten BP, van den Hove DL: Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging. 2013, 34 (9): 2091-2099. 10.1016/j.neurobiolaging.2013.02.021.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Kapogiannis D, Mattson MP: Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011, 10 (2): 187-198. 10.1016/S1474-4422(10)70277-5.PubMedCentralCrossRefPubMed Kapogiannis D, Mattson MP: Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011, 10 (2): 187-198. 10.1016/S1474-4422(10)70277-5.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Walter J, van Echten-Deckert G: Cross-talk of membrane lipids and Alzheimer-related proteins. Mol Neurodegener. 2013, 8: 34-10.1186/1750-1326-8-34.PubMedCentralCrossRefPubMed Walter J, van Echten-Deckert G: Cross-talk of membrane lipids and Alzheimer-related proteins. Mol Neurodegener. 2013, 8: 34-10.1186/1750-1326-8-34.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S, Van Leuven F: Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta. 2010, 1802 (10): 808-818. 10.1016/j.bbadis.2010.03.005.CrossRefPubMed Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S, Van Leuven F: Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta. 2010, 1802 (10): 808-818. 10.1016/j.bbadis.2010.03.005.CrossRefPubMed
18.
Zurück zum Zitat Kitazawa M, Medeiros R, Laferla FM: Transgenic mouse models of alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012, 18 (8): 1131-1147. 10.2174/138161212799315786.PubMedCentralCrossRefPubMed Kitazawa M, Medeiros R, Laferla FM: Transgenic mouse models of alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des. 2012, 18 (8): 1131-1147. 10.2174/138161212799315786.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Pruessing K, Voigt A, Schulz JB: Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener. 2013, 8: 35-10.1186/1750-1326-8-S1-P35.CrossRef Pruessing K, Voigt A, Schulz JB: Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener. 2013, 8: 35-10.1186/1750-1326-8-S1-P35.CrossRef
21.
Zurück zum Zitat Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482 (7384): 216-220.PubMedCentralPubMed Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482 (7384): 216-220.PubMedCentralPubMed
22.
Zurück zum Zitat Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011, 20 (23): 4530-4539. 10.1093/hmg/ddr394.CrossRefPubMed Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011, 20 (23): 4530-4539. 10.1093/hmg/ddr394.CrossRefPubMed
Metadaten
Titel
Current concepts in Alzheimer’s Disease: molecules, models and translational perspectives
verfasst von
Bart PF Rutten
Harry WM Steinbusch
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Molecular Neurodegeneration / Ausgabe 1/2013
Elektronische ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-8-33

Weitere Artikel der Ausgabe 1/2013

Molecular Neurodegeneration 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.