Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 5/2023

13.05.2023 | Original Research

Deep learning classification of capnography waveforms: secondary analysis of the PRODIGY study

verfasst von: Aaron Conway, Mohammad Goudarzi Rad, Wentao Zhou, Matteo Parotto, Carla Jungquist

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Capnography monitors trigger high priority ‘no breath’ alarms when CO2 measurements do not exceed a given threshold over a specified time-period. False alarms occur when the underlying breathing pattern is stable, but the alarm is triggered when the CO2 value reduces even slightly below the threshold. True ‘no breath’ events can be falsely classified as breathing if waveform artifact causes an aberrant spike in CO2 values above the threshold. The aim of this study was to determine the accuracy of a deep learning approach to classifying segments of capnography waveforms as either ‘breath’ or ‘no breath’. A post hoc secondary analysis of data from 9 North American sites included in the PRediction of Opioid-induced Respiratory Depression In Patients Monitored by capnoGraphY (PRODIGY) study was conducted. We used a convolutional neural network to classify 15 s capnography waveform segments drawn from a random sample of 400 participants. Loss was calculated over batches of 32 using the binary cross-entropy loss function with weights updated using the Adam optimizer. Internal-external validation was performed by iteratively fitting the model using data from all but one hospital and then assessing its performance in the remaining hospital. The labelled dataset consisted of 10,391 capnography waveform segments. The neural network’s accuracy was 0.97, precision was 0.97 and recall was 0.96. Performance was consistent across hospitals in internal-external validation. The neural network could reduce false capnography alarms. Further research is needed to compare the frequency of alarms derived from the neural network with the standard approach.
Literatur
1.
Zurück zum Zitat Drew BJ, Harris P, Zegre-Hemsey JK, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9(10):e110274.CrossRefPubMedPubMedCentral Drew BJ, Harris P, Zegre-Hemsey JK, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE. 2014;9(10):e110274.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Winters BD, Cvach MM, Bonafide CP, et al. Technological distractions (part 2): a summary of approaches to manage clinical alarms with intent to reduce alarm fatigue. Crit Care Med. 2018;46(1):130–7.CrossRefPubMed Winters BD, Cvach MM, Bonafide CP, et al. Technological distractions (part 2): a summary of approaches to manage clinical alarms with intent to reduce alarm fatigue. Crit Care Med. 2018;46(1):130–7.CrossRefPubMed
3.
Zurück zum Zitat Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46(4):268–77.CrossRefPubMed Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46(4):268–77.CrossRefPubMed
5.
Zurück zum Zitat Sun Z, Sessler DI, Dalton JE, et al. Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg. 2015;121(3):709.CrossRefPubMedPubMedCentral Sun Z, Sessler DI, Dalton JE, et al. Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg. 2015;121(3):709.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Khanna AK, Saager L, Bergese SD, et al. Opioid-induced respiratory depression increases hospital costs and length of stay in patients recovering on the general care floor. BMC Anesthesiol. 2021;21(1):1–12.CrossRef Khanna AK, Saager L, Bergese SD, et al. Opioid-induced respiratory depression increases hospital costs and length of stay in patients recovering on the general care floor. BMC Anesthesiol. 2021;21(1):1–12.CrossRef
9.
Zurück zum Zitat Pedregosa F, Michel V, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30. Pedregosa F, Michel V, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
10.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;770–778.
13.
Zurück zum Zitat Seabold S, Perktold J, Statsmodels. Econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference. 2010;57:10-25080. Seabold S, Perktold J, Statsmodels. Econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference. 2010;57:10-25080.
15.
Zurück zum Zitat Urman RD, Khanna AK, Bergese SD, et al. Postoperative opioid administration characteristics associated with opioid-induced respiratory depression: results from the PRODIGY trial. J Clin Anesth. 2021;70:110167.CrossRefPubMed Urman RD, Khanna AK, Bergese SD, et al. Postoperative opioid administration characteristics associated with opioid-induced respiratory depression: results from the PRODIGY trial. J Clin Anesth. 2021;70:110167.CrossRefPubMed
16.
Zurück zum Zitat Waljee JF, Zhong L, Hou H, Sears E, Brummet C, Chung KC. The utilization of opioid analgesics following common upper extremity surgical procedures: a national, population-based study. Plast Reconstr Surg. 2016;137(2):355e.CrossRefPubMedPubMedCentral Waljee JF, Zhong L, Hou H, Sears E, Brummet C, Chung KC. The utilization of opioid analgesics following common upper extremity surgical procedures: a national, population-based study. Plast Reconstr Surg. 2016;137(2):355e.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bhagya D, Manikandan S. Speed of sound-based capnographic sensor with second-generation CNN for automated classification of cardiorespiratory abnormalities. IEEE Sens J. 2019;19(19):8887–94.CrossRef Bhagya D, Manikandan S. Speed of sound-based capnographic sensor with second-generation CNN for automated classification of cardiorespiratory abnormalities. IEEE Sens J. 2019;19(19):8887–94.CrossRef
18.
Zurück zum Zitat Mieloszyk RJ, Verghese GC, Deitch K, et al. Automated quantitative analysis of capnogram shape for COPD–normal and COPD–CHF classification. IEEE Trans Biomed Eng. 2014;61(12):2882–90.CrossRefPubMed Mieloszyk RJ, Verghese GC, Deitch K, et al. Automated quantitative analysis of capnogram shape for COPD–normal and COPD–CHF classification. IEEE Trans Biomed Eng. 2014;61(12):2882–90.CrossRefPubMed
19.
Zurück zum Zitat Bhagya D, Suchetha M. A 1-D deformable convolutional neural network for the quantitative analysis of capnographic sensor. IEEE Sens J. 2020;21(5):6672–8.CrossRef Bhagya D, Suchetha M. A 1-D deformable convolutional neural network for the quantitative analysis of capnographic sensor. IEEE Sens J. 2020;21(5):6672–8.CrossRef
20.
Zurück zum Zitat Pertzov B, Ronen M, Rosengarten D, et al. Use of capnography for prediction of obstruction severity in non-intubated COPD and asthma patients. Respir Res. 2021;22(1):1–9.CrossRef Pertzov B, Ronen M, Rosengarten D, et al. Use of capnography for prediction of obstruction severity in non-intubated COPD and asthma patients. Respir Res. 2021;22(1):1–9.CrossRef
21.
Zurück zum Zitat El-Badawy IM, Singh OP, Omar Z. Automatic classification of regular and irregular capnogram segments using time-and frequency-domain features: a machine learning-based approach. Technol Health Care. 2021;29(1):59–72.CrossRefPubMed El-Badawy IM, Singh OP, Omar Z. Automatic classification of regular and irregular capnogram segments using time-and frequency-domain features: a machine learning-based approach. Technol Health Care. 2021;29(1):59–72.CrossRefPubMed
23.
Zurück zum Zitat Jaffe MB. Using the features of the time and volumetric capnogram for classification and prediction. J Clin Monit Comput. 2017;31(1):19–41.CrossRefPubMed Jaffe MB. Using the features of the time and volumetric capnogram for classification and prediction. J Clin Monit Comput. 2017;31(1):19–41.CrossRefPubMed
30.
Zurück zum Zitat Conway A, Collins P, Chang K, et al. Pre-apneic capnography waveform abnormalities during procedural sedation and analgesia. J Clin Monit Comput. 2020;34(5):1061–8.CrossRefPubMed Conway A, Collins P, Chang K, et al. Pre-apneic capnography waveform abnormalities during procedural sedation and analgesia. J Clin Monit Comput. 2020;34(5):1061–8.CrossRefPubMed
31.
Zurück zum Zitat Conway A, Jungquist CR, Chang K, et al. Predicting prolonged apnea during nurse-administered procedural sedation: machine learning study. JMIR Perioper Med. 2021;4(2):e29200.CrossRefPubMedPubMedCentral Conway A, Jungquist CR, Chang K, et al. Predicting prolonged apnea during nurse-administered procedural sedation: machine learning study. JMIR Perioper Med. 2021;4(2):e29200.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Conway A, Rolley J, Page K, Fulbrook P. Issues and challenges associated with nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory: a qualitative study. J Clin Nurs. 2014;23(3–4):374–84.CrossRefPubMed Conway A, Rolley J, Page K, Fulbrook P. Issues and challenges associated with nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory: a qualitative study. J Clin Nurs. 2014;23(3–4):374–84.CrossRefPubMed
33.
Zurück zum Zitat Conway A, Collins P, Chang K, et al. High flow nasal oxygen during procedural sedation for cardiac implantable electronic device procedures: a randomised controlled trial. Eur J Anaesthesiology. 2021;38(8):839–49.CrossRef Conway A, Collins P, Chang K, et al. High flow nasal oxygen during procedural sedation for cardiac implantable electronic device procedures: a randomised controlled trial. Eur J Anaesthesiology. 2021;38(8):839–49.CrossRef
Metadaten
Titel
Deep learning classification of capnography waveforms: secondary analysis of the PRODIGY study
verfasst von
Aaron Conway
Mohammad Goudarzi Rad
Wentao Zhou
Matteo Parotto
Carla Jungquist
Publikationsdatum
13.05.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 5/2023
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-023-01028-y

Weitere Artikel der Ausgabe 5/2023

Journal of Clinical Monitoring and Computing 5/2023 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.