Skip to main content
Erschienen in: Critical Care 1/2019

Open Access 01.12.2019 | Editorial

Interventions to improve cardiopulmonary resuscitation: a review of meta-analyses and future agenda

verfasst von: Athanasios Chalkias, John P. A. Ioannidis

Erschienen in: Critical Care | Ausgabe 1/2019

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CPR
Cardiopulmonary resuscitation
RCTs
Randomized controlled trials
Hardly any other medical intervention is as directly relevant for life-and-death outcomes as cardiopulmonary resuscitation (CPR). One would have expected, therefore, extensive evidence from rigorous randomized controlled trials (RCTs) for fine-tuning best approaches that maximize CPR effectiveness. However, this is not the case. Professional guidelines reflect little tangible progress, and recommendations are not driven by strong effects seen in RCTs.
To map the landscape of meta-analyses of RCTs on CPR, we searched PubMed (April 8, 2019) for “cardiopulmonary resuscitation AND meta-analysis AND (randomized OR randomised).” We screened 114 retrieved items for meta-analyses of RCTs in real patients (not education or simulation/manikins), addressing aspects pertaining to CPR per se rather than interventions done afterwards (e.g., hypothermia) and using survival and/or neurologically intact survival as outcomes. Whenever multiple overlapping meta-analyses existed, we kept all of them if they were published after 2013, to examine consistency of results.
The available evidence (Table 1) suggests that we have a dearth of interventions that improve survival rates at hospital discharge and, even less so, neurological outcomes [112]. All benefits, if any, pertain to out-of-hospital cardiac arrest circumstances, while no new technology or improvement seems to work for in-hospital arrests. For out-of-hospital cardiac arrests, continuous (versus interrupted) chest compressions, epinephrine, and use of endotracheal tube intubation (versus supraglottic airway devices) may achieve modest increases in survival at hospital discharge. However, the lower 95% confidence intervals of the risk ratios in the most recent, inclusive meta-analyses on these interventions reach down to 1.00–1.02. Therefore, we cannot exclude that even these benefits are negligible or even non-existent. Survival with neurologically intact outcome is not conclusively increased by any of the interventions listed in the Table 1; epinephrine achieves a nominally statistically significant modest benefit over pooled control treatments, but this is less clear in separate comparisons against different control options. Epinephrine saves some patients who are admitted to the hospital, but they are not discharged neurologically intact. Other interventions also have disappointing results, e.g., no clear benefit is seen with mechanical devices for chest compression (they are even harmful for in-hospital cardiac arrest) and the order of chest compression versus defibrillation may not matter.
Table 1
Meta-analyses of randomized controlled trials with survival and neurologically intact survival as outcomes
 
Comparison (setting)
N randomized
Outcome measures (timing) [N]
Relative risk (95% CI)
Heterogeneity
Chest compressions
 Meier et al. [1]
Chest compression-first vs. defibrillation-first (OHCA)
1503
Survival (HD) [N = 1503]
OR 1.10 (0.70–1.70)
I2 = 34%, p = 0.206
CPC 1–2 (HD) [N = 402]
OR 1.02 (0.31–3.38)
I2 = 75%, p = 0.05
Long-term survival (1 year) [N = 1301]
OR 1.38 (0.95–2.02)
I2 = 0.0%, p = 0.647#
 Brooks et al. [2] and updated 2014 [3]
Mechanical vs. standard manual chest compressions (OHCA and IHCA)
868 and 1166¥
Survival (HA) [N = 164]
Not pooled
Studies not pooled
CPC 1–2 (HD) [N = 767]
RR 0.41 (0.21–0.79)
Single study
Survival (HD) [N = 1063]
Not pooled
Studies not pooled
 Gates et al. [4]
Mechanical vs. standard manual chest compressions (OHCA)
12,206
Survival (HA) [N = 7208]
OR 0.95 (0.85–1.07)
I2 = 0.0%, p = 0.78
Survival (HD or 30 days) [N = 12,206]
OR 0.89 (0.77–1.02)
I2 = 0.0%, p = 0.49
CPC 1–2 or RS 0–3 (HD) [N = 12,206]
OR 0.76 (0.53–1.11)
I2 = 68%, p = 0.02
 Tang et al. [5]
Mechanical vs. manual chest compressions (OHCA)
12,510
Survival (HA) [N = 12,510]
RR 0.94 (0.89–1.00)
I2 = 0.0%, p = 0.48
Survival (HD) [N = 12,510]
RR 0.88 (0.78–0.99)
I2 = 27%, p = 0.24
CPC 1–2 or RS 0–3 (HD) [N = 12,058]
RR 0.80 (0.61–1.04)
I2 = 65%, p = 0.04
Long-term survival (≥ 6 months) [N = 7060]
RR 0.96 (0.79–1.16)
I2 = 16%, p = 0.28
 Li et al. [6]
Mechanical vs. manual chest compression (OHCA and IHCA)
11,162
Survival (HA), OOH group [N = 9975]
RR 0.97 (0.91–1.04)
I2 = 60%, p = 0.015
Survival (HD), OOH group [N = 4688]
RR 0.99 (0.82–1.18)
I2 = 71%, p = 0.004
Survival (HD), IH group [N = 200]
RR 0.54 (0.29–0.98)
I2 = 0.0%, p = 0.825
CPC 1–2 (HD), OOH group [N = 8885]
RR 1.11 (0.95–1.30)
I2 = 59%, p = 0.032
 Zhan et al. [7]
Continuous (+/− rescue breathing) vs. interrupted chest compression with pauses for breaths (OHCA)
26,742
Survival (HA) [N = 520]
RR 1.18 (0.94–1.48)
Single study
Survival (HD) [N = 3031]
RR 1.21 (1.01–1.46)
I2 = 0.0%, p = 0.68
CPC 1–2 (HD) [N = 1286]
RR 1.25 (0.94–1.66)
Single study
Adrenaline
 Lin et al. [8]
SDA vs. placebo (OHCA)
12,246
Survival (HA) [N = 534]
RR 1.95 (1.34–2.84)
Single study
Survival (HD) [N = 534]
RR 2.12 (0.75–6.02)
Single study
CPC 1–2 (HD) [N = 534]
RR 1.73 (0.59–5.11)
Single study
SDA vs. HDA (OHCA)
 
Survival (HA) [N = 5699]
RR 0.87 (0.76–1.00)
I2 = 34%, p = 0.21
Survival (HD) [N = 5638]
RR 1.04 (0.76–1.42)
I2 = 0.0%, p = 0.66
CPC 1–2 (HD) [N = 3883]
RR 1.20 (0.74–1.96)
I2 = 0.0%, p = 0.33
SDA vs. vasopressin (OHCA)
 
Survival (HA) [N = 336]
Not pooled
Single study
Survival (HD) [N = 336]
RR 0.68 (0.25–1.82)
Single study
CPC 1–2 (HD) [N = 336]
RR 0.68 (0.25–1.82)
Single study
SDA vs. vasopressin/adrenaline (OHCA)
 
Survival (HA) [N = 4877]
RR 0.88 (0.73–1.06)
I2 = 56%, p = 0.06
Survival (HD) [N = 4877]
RR 1.00 (0.69–1.44)
I2 = 25%, p = 0.26
CPC 1–2 (HD) [N = 4807]
RR 1.32 (0.88–1.98)
I2 = 0.0%, p = 0.85
 Kempton et al. [9]
Epinephrine vs. placebo (OHCA)
17,635
Survival (HA) [N = 9511]
OR 2.52 (1.63–3.88)
I2 = 84%, p < 0.0001
Survival (HD) [N = 9805]
OR 1.09 (0.48–2.47)
I2 = 77%, p = 0.0002
CPC 1–2 or RS 0–3 (HD) [N = 9383]
OR 0.81 (0.34–1.96)
I2 = 83%, p = 0.0005
 Finn et al. [10]
SDA vs. placebo (OHCA and IHCA)
21,704
Survival (HA) [N = 8489]
RR 2.51 (1.67–3.76)
I2 = 77%, p = 0.04
Survival (HD) [N = 8538]
RR 1.44 (1.11–1.86)
I2 = 0.0%, p = 0.45
Neurological outcome (HD) [N = 8535]
RR 1.21 (0.90–1.62)
I2 = 0.0%, p = 0.49
SDA vs. HAD (OHCA and IHCA)
 
Survival (HA) [N = 5764]
RR 1.13 (1.03–1.24)
I2 = 0.0%, p = 0.42
Survival (24 h) [N = 4179]
RR 1.04 (0.76–1.43)
I2 = 39%, p = 0.16
Survival (HD) [N = 6274]
RR 1.10 (0.75–1.62)
I2 = 24%, p = 0.23
Neurological outcome (HD) [N = 5803]
RR 0.91 (0.65–1.26)
I2 = 0.0%, p = 0.42
SDA vs. vasopressin (OHCA and IHCA)
 
Survival (HA) [N = 1953]
RR 1.27 (1.04–1.54)
I2 = 27%, p = 0.25
Survival (HD) [N = 2511]
RR 1.25 (0.84–1.85)
I2 = 29%, p = 0.22
Neurological outcome (HD) [N = 2406]
RR 0.82 (0.54–1.25)
I2 = 0.0%, p = 0.46
SDA vs. SDA + vasopressin (OHCA)
 
Survival (HA) [N = 3249]
RR 0.95 (0.83–1.08)
I2 = 0.0%, p = 0.55
Survival (HD) [N = 3242]
RR 0.76 (0.47–1.22)
I2 = 0.0%, p = 0.57
Neurological outcome (HD) [N = 2887]
RR 0.65 (0.33–1.31)
Single study
 Vargas et al. [11]
Epinephrine vs. control (OHCA)
20,716
Survival (HA) [N = 20,306]
RR 1.02 (0.75–1.39)
I2 = 96.21%, p < 0.01
Survival (HD) [N = 19,909]
RR 1.16 (1.00–1.35)
I2 = 0.0%, p = 0.49
CPC 1–2 or similar (HD) [N = 18,458]£
RR 1.24 (1.05–1.48)
I2 = 0.0%, p = 0.94
Airway management
 White et al. [12]
Endotracheal tube intubation vs. supraglottic airway devices (OHCA)
539,146
Survival (HA) [N = 51,756]
OR 1.36 (1.12–1.66)
I2 = 91%, p = 0.002
Survival (HD) [N = 440,564]
OR 1.28 (1.02–1.60)
I2 = 96%, p = 0.03
CPC 1–2 or RS < 3 [HD] [N = 438,261]
OR 1.16 (0.94–1.41)
I2 = 91%, p = 0.16
HA hospital admission, HD hospital discharge, RS Rankin score, OHCA out-of-hospital cardiac arrest, IHCA in-hospital cardiac arrest, SDA standard dose adrenaline, HAD high-dose adrenaline
Randomized and quasi-randomized studies
¥From randomized controlled trials, cluster-randomized controlled trials, and quasi-randomized studies
£CPC 1–2, an overall performance category 1–2, a modified Rankin Scale score 1–2, and a normal or moderate disability
This rather disheartening evidence pertains largely to short-time follow-up. Longer-term outcomes are essential to make informed choices, but these data are rarely available from RCTs. One can try to supplement the evidence gap with observational datasets, and this is becoming increasingly convenient as large datasets become routinely available. However, for what are likely to be modest or subtle differences, it is unlikely that observational data will be sufficiently error-free to be conclusive. Many observational studies in this field claim sizeable survival differences, but their credibility is questionable—they need to be validated in carefully done RCTs [13]. For example, a highly cited observational study has found that endotracheal intubation is harmful for in-hospital arrest [14]. The availability of data on over 100,000 patients results in a very tight 95% confidence interval for neurological outcome and an astronomically low p value. However, this precision is misleading because potential bias may completely invalidate this conclusion.
In contrast to massive observational datasets, the RCTs done to-date and even their meta-analyses have usually had rather limited sample sizes. Clinically meaningful differences between the tested interventions may still have been missed, e.g., 20% relative risk differences in survival cannot be completely excluded for anything that has been tested to-date. This suggests that we need much larger RCTs in this field. Given that CPR is so commonly required, large simple trials should be feasible to do in large enough health care structures. It is important to instill in the future research agenda a strong element of pragmatism, so that the results would be more directly applicable to real-life circumstances. CPR is a good example where “point of care” randomization should be feasible without obtaining consent first given the nature of the intervention. Randomization should be the default option for CPR encounters if a protocol has been approved and set in place. RCTs with sample sizes in the tens of thousands of participants should be the goal.
A challenge in conducting such large-scale pragmatic RCTs is to avoid diluting the potential therapeutic effects by poor choices in the background management of the resuscitated patients. For example, an intervention may be effective by itself, but whatever benefit it produces may be lost if the patients undergo low-quality chest compressions or if they are then sub-optimally managed in the intensive care setting, e.g., improper choices are made for hypo- or hyper-ventilation. Meeting both pragmatism and some essential quality standards needs careful design and proper background training of the resuscitating and managing teams.
Another challenge is selecting the proper dose of various interventions to be tested. Several standard choices in the CPR ritual have little evidence to support that the dose, intensity, timing, or frequency used is optimized. For example, the standard dose of adrenalin (1 mg) is largely based on an experiment done over a century ago in 10-kg dogs, in which adrenaline was given at a dose of 0.1 mg/kg. While we have some randomized evidence on higher doses, we have no evidence on lower than standard doses. Timing may also be important. For example, another high-profile recent trial [15] administered epinephrine in patients who were largely “dead” (at 20 min post-arrest) and this may have affected its ability to be effective.
Finally, single interventions may have very limited efficacy and effectiveness, but their combination may manage to achieve a breakthrough in success rates. Testing this hypothesis would require running factorial trials, where two randomizations are performed concurrently. Then, one can assess both interventions as well as their joint effect in a statistically efficient manner.
CPR may save lives, and optimizing it should not be left to chance. A rigorous agenda of large pragmatic RCTs is long due. With simple design, the cost of these trials can be minimized, since data collection would pertain to only the most relevant information. Health care systems, insurances, and public agencies could make excellent investments in funding such trials.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Meier P, Baker P, Jost D, Jacobs I, Henzi B, Knapp G, Sasson C. Chest compressions before defibrillation for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled clinical trials. BMC Med. 2010;8:52.CrossRef Meier P, Baker P, Jost D, Jacobs I, Henzi B, Knapp G, Sasson C. Chest compressions before defibrillation for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled clinical trials. BMC Med. 2010;8:52.CrossRef
2.
Zurück zum Zitat Brooks SC, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2011;1:CD007260. Brooks SC, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2011;1:CD007260.
3.
Zurück zum Zitat Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:CD007260. Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:CD007260.
4.
Zurück zum Zitat Gates S, Quinn T, Deakin CD, Blair L, Couper K, Perkins GD. Mechanical chest compression for out of hospital cardiac arrest: systematic review and meta-analysis. Resuscitation. 2015;94:91–7.CrossRef Gates S, Quinn T, Deakin CD, Blair L, Couper K, Perkins GD. Mechanical chest compression for out of hospital cardiac arrest: systematic review and meta-analysis. Resuscitation. 2015;94:91–7.CrossRef
5.
Zurück zum Zitat Tang L, Gu WJ, Wang F. Mechanical versus manual chest compressions for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. Sci Rep. 2015;5:15635.CrossRef Tang L, Gu WJ, Wang F. Mechanical versus manual chest compressions for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. Sci Rep. 2015;5:15635.CrossRef
6.
Zurück zum Zitat Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016;24:10.CrossRef Li H, Wang D, Yu Y, Zhao X, Jing X. Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016;24:10.CrossRef
7.
Zurück zum Zitat Zhan L, Yang LJ, Huang Y, He Q, Liu GJ. Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2017;3:CD010134.PubMed Zhan L, Yang LJ, Huang Y, He Q, Liu GJ. Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2017;3:CD010134.PubMed
8.
Zurück zum Zitat Lin S, Callaway CW, Shah PS, Wagner JD, Beyene J, Ziegler CP, Morrison LJ. Adrenaline for out-of-hospital cardiac arrest resuscitation: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2014;85(6):732–40.CrossRef Lin S, Callaway CW, Shah PS, Wagner JD, Beyene J, Ziegler CP, Morrison LJ. Adrenaline for out-of-hospital cardiac arrest resuscitation: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2014;85(6):732–40.CrossRef
9.
Zurück zum Zitat Kempton H, Vlok R, Thang C, Melhuish T, White L. Standard dose epinephrine versus placebo in out of hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2019;37(3):511–7.CrossRef Kempton H, Vlok R, Thang C, Melhuish T, White L. Standard dose epinephrine versus placebo in out of hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2019;37(3):511–7.CrossRef
10.
Zurück zum Zitat Finn J, Jacobs I, Williams TA, Gates S, Perkins GD. Adrenaline and vasopressin for cardiac arrest. Cochrane Database Syst Rev. 2019;1:CD003179.PubMed Finn J, Jacobs I, Williams TA, Gates S, Perkins GD. Adrenaline and vasopressin for cardiac arrest. Cochrane Database Syst Rev. 2019;1:CD003179.PubMed
11.
Zurück zum Zitat Vargas M, Buonanno P, Iacovazzo C, Servillo G. Epinephrine for out of hospital cardiac arrest: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2019;136:54–60.CrossRef Vargas M, Buonanno P, Iacovazzo C, Servillo G. Epinephrine for out of hospital cardiac arrest: a systematic review and meta-analysis of randomized controlled trials. Resuscitation. 2019;136:54–60.CrossRef
12.
Zurück zum Zitat White L, Melhuish T, Holyoak R, Ryan T, Kempton H, Vlok R. Advanced airway management in out of hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2018;36(12):2298–306.CrossRef White L, Melhuish T, Holyoak R, Ryan T, Kempton H, Vlok R. Advanced airway management in out of hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2018;36(12):2298–306.CrossRef
13.
Zurück zum Zitat Newell C, Grier S, Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Crit Care. 2018;22(1):190.CrossRef Newell C, Grier S, Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Crit Care. 2018;22(1):190.CrossRef
14.
Zurück zum Zitat Andersen LW, Granfeldt A, Callaway CW, Bradley SM, Soar J, Nolan JP, Kurth T, Donnino MW. Association between tracheal intubation during adult in-hospital cardiac arrest and survival. JAMA. 2017;317(5):494–506.CrossRef Andersen LW, Granfeldt A, Callaway CW, Bradley SM, Soar J, Nolan JP, Kurth T, Donnino MW. Association between tracheal intubation during adult in-hospital cardiac arrest and survival. JAMA. 2017;317(5):494–506.CrossRef
15.
Zurück zum Zitat Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O'Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R, PARAMEDIC2 collaborators. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379(8):711–21.CrossRef Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O'Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R, PARAMEDIC2 collaborators. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379(8):711–21.CrossRef
Metadaten
Titel
Interventions to improve cardiopulmonary resuscitation: a review of meta-analyses and future agenda
verfasst von
Athanasios Chalkias
John P. A. Ioannidis
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2019
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2495-5

Weitere Artikel der Ausgabe 1/2019

Critical Care 1/2019 Zur Ausgabe

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.