Skip to main content
Erschienen in: Intensive Care Medicine 8/2014

Open Access 01.08.2014 | Understanding the Disease

Understanding negative pressure pulmonary edema

verfasst von: Malcolm Lemyze, Jihad Mallat

Erschienen in: Intensive Care Medicine | Ausgabe 8/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00134-014-3307-7) contains supplementary material, which is available to authorized users.
M. Lemyze and J. Mallat contributed equally to this work.
Abkürzungen
NPPE
Negative pressure pulmonary edema
PE
Pulmonary edema
UAO
Upper airway obstruction
ICU
Intensive care unit
ARDS
Acute respiratory distress syndrome
NIV
Noninvasive positive pressure ventilation
Negative pressure pulmonary edema (NPPE) is a form of noncardiogenic pulmonary edema (PE) that results from the generation of high negative intrathoracic pressure (NIP) needed to overcome upper airway obstruction (UAO). NPPE is a potentially life-threatening complication that develops rapidly after UAO in otherwise healthy young persons who are capable of producing large markedly NIPs. The incidence of NPPE, in patients developing acute UAO, has been estimated to be up to 12 % [1]. The true incidence, however, is not known and may be higher than has been suggested, since many cases may have been misdiagnosed because of a lack of familiarity with the syndrome. All causes of obstructed upper airway may lead to NPPE [2]. However, the most commonly reported etiology of NPPE in adults is laryngospasm during intubation or in the postoperative period after anesthesia (50 % of cases of NPPE) [3]. Nevertheless, NPPE may be more common in ICU patients than is thought; For instance, ventilation with low tidal volume during the acute phase of ARDS in patients with increased respiratory drive can lead to patient–ventilator asynchrony that causes increased breathing effort and the generation of high NIPs that will further worsen PE. Also, strong inspiratory efforts in the presence of increased resistive work of breathing will lead to negative alveolar pressures mimicking the cardiothoracic relationships present during NPPE, and may contribute to extubation failure in some patients.
Understanding the pulmonary fluid homeostasis is crucial to comprehend the mechanisms responsible for pulmonary edema formation. In the normal lung, the net fluid transfer across the pulmonary capillaries depends on the net difference between hydrostatic and colloid osmotic pressures, as well as on the permeability of the capillary membrane (Starling’s law). Under normal conditions, most of this filtered fluid is removed from the interstitium through the lymphatic system to return to the systemic circulation [4]. The alveolar epithelium, because of its tight intercellular junctions, acts as an effective barrier limiting water intrusion into alveolar spaces. However, when the hydrostatic pressure in the pulmonary capillary bed increases and/or the lung interstitial pressure decreases, the rate of transvascular fluid filtration rises, causing edema in the perimicrovascular interstitial spaces, and maybe alveolar flooding if a critical quantity of edema fluid in the interstitial space has been reached [4, 5].
What is the pathophysiology of NPPE? Two different mechanisms have been suggested to explain the pathogenesis of PE during UAO. One belief is that NPPE is developed by substantial fluid shifts due to swings in intrathoracic pressure [6]. Markedly NIP is generated by deep inspiratory efforts against an occluded airway or a closed glottis (modified Müller maneuver). Young healthy subjects can generate very high levels of negative inspiratory pressure with a maximum of −140 cmH2O [7]. This NIP is transmitted by the same amount to the intrapleural spaces, resulting in augmentation of venous return to the right side of the heart, and pulmonary venous pressures, while decreasing perivascular interstitial hydrostatic pressure, which favors movement of fluid from the pulmonary capillaries into the interstitium and alveolar spaces [8] (Fig. 1). Also, the hyperadrenergic state associated with catastrophic UAO can cause peripheral vasoconstriction and an increase in venous return, which could further increase pulmonary blood flow, contributing to edema. Furthermore, the NIP increases left ventricular afterload by increasing the transmural left ventricular pressure, thus raising ventricular wall tension [9]. The increase in afterload depresses left ventricular ejection. In addition, the resulting hypoxemia decreases myocardial contractility and increases pulmonary arterial resistance. The fall in left ventricular ejection fraction augments in succession end-diastolic pressure, left atrial pressure, and pulmonary venous pressure, further increasing the pulmonary capillary hydrostatic pressures that promote the formation of PE [9]. Therefore, the combination of increased preload and afterload associated with a decrease in pulmonary interstitial pressure cause a high increase in the hydrostatic pulmonary pressure gradient (disturbance of the Starling equilibrium), allowing transudation of fluid out of the pulmonary capillary into the lung interstitium, resulting in PE. This mechanism of NPPE is similar to hydrostatic PE as observed in patients suffering from congestive heart failure or volume overload states.
The second suggested mechanism is that the mechanical stress developed from respiration against an obstructed upper airway may induce breaks in the alveolar epithelial and pulmonary microvascular membranes, resulting in increased pulmonary capillary permeability and protein-rich PE [7, 10]. This theory is based on the concept of wall stress failure developed more than 20 years ago by West et al. [11], in which increasing transmural pulmonary capillary pressures cause disruption of the alveolar–capillary membrane with resultant high-permeability PE. In animals, when pulmonary capillaries are subjected to increased transmural pressure, ultrastructural damage of the walls of the capillaries and alveolar epithelium is observed under scanning electron microscope [12]. Stress failure of pulmonary capillaries has been suggested to be involved in several conditions causing PE and hemorrhage, including neurogenic and high-altitude PE [13], and following intense exercise in elite human athletes [14]. This indicates that acute increases in transmural pulmonary capillary pressures as observed in NPPE may lead to high-permeability PE [15]. However, Fremont et al. [2], in 10 NPPE patients, found a low PE fluid-to-serum protein ratio with normal alveolar fluid clearance, further supporting a hydrostatic mechanism for edema fluid formation. Nevertheless, we believe that the pathogenesis of NPPE is probably multifactorial, ranging from transudative to high-permeability edema when a very high transmural pulmonary capillary pressure has been produced.
Treatment of NPPE generally includes maintaining a patent airway, and oxygen supplementation with addition of positive end-expiratory pressure or noninvasive positive pressure ventilation (NIV) as guided by physical examination and arterial blood gas analysis. Mechanical ventilation should be reserved for severe patients who do not respond to NIV. Diuretics are often used; however, there is no evidence of their utility, and they may exacerbate hypovolemia and hypoperfusion. Ultimately, NPPE usually has a rapidly resolving clinical course in 12–48 h when recognized early and treated immediately.
Understanding the pathophysiological mechanisms contributing to PE can help in distinguishing NPPE from other causes of noncardiogenic PE, thus preventing use of inappropriate and dangerous treatment for patients with NPPE.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Tami TA, Chu F, Wildes TO, Kaplan M (1986) Pulmonary edema and acute upper airway obstruction. Laryngoscope 96:506–509PubMedCrossRef Tami TA, Chu F, Wildes TO, Kaplan M (1986) Pulmonary edema and acute upper airway obstruction. Laryngoscope 96:506–509PubMedCrossRef
2.
3.
Zurück zum Zitat Louis PJ, Fernandes R (2002) Negative pressure pulmonary edema. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:4–6PubMedCrossRef Louis PJ, Fernandes R (2002) Negative pressure pulmonary edema. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:4–6PubMedCrossRef
4.
Zurück zum Zitat Matthay MA, Folkesson HG, Clerici C (2002) Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 82:569–600PubMed Matthay MA, Folkesson HG, Clerici C (2002) Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 82:569–600PubMed
5.
Zurück zum Zitat Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796PubMedCrossRef Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796PubMedCrossRef
6.
Zurück zum Zitat Oswalt CE, Gates GA, Holmstrom MG (1977) Pulmonary edema as a complication of acute airway obstruction. JAMA 238:1833–1835PubMedCrossRef Oswalt CE, Gates GA, Holmstrom MG (1977) Pulmonary edema as a complication of acute airway obstruction. JAMA 238:1833–1835PubMedCrossRef
7.
Zurück zum Zitat Cook CD, Mead J (1960) Maximum and minimum airway pressures at various lung volumes in normal children and adults. Fed Proc 19:377 Cook CD, Mead J (1960) Maximum and minimum airway pressures at various lung volumes in normal children and adults. Fed Proc 19:377
8.
Zurück zum Zitat Krodel DJ, Bittner EA, Abdulnour R, Brown R, Eikermann M (2010) Case scenario: acute postoperative negative pressure pulmonary edema. Anesthesiology 113:200–207PubMedCrossRef Krodel DJ, Bittner EA, Abdulnour R, Brown R, Eikermann M (2010) Case scenario: acute postoperative negative pressure pulmonary edema. Anesthesiology 113:200–207PubMedCrossRef
9.
Zurück zum Zitat Buda AJ, Pinsky MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459PubMedCrossRef Buda AJ, Pinsky MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459PubMedCrossRef
10.
Zurück zum Zitat Koh MS, Hsu AA, Eng P (2003) Negative pressure pulmonary oedema in the medical intensive care unit. Intensive Care Med 29:1601–1604PubMedCrossRef Koh MS, Hsu AA, Eng P (2003) Negative pressure pulmonary oedema in the medical intensive care unit. Intensive Care Med 29:1601–1604PubMedCrossRef
11.
Zurück zum Zitat West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340:762–767PubMedCrossRef West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340:762–767PubMedCrossRef
12.
Zurück zum Zitat West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMed West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMed
13.
Zurück zum Zitat West JB, Colice GL, Lee YJ, Namba Y, Kurdak SS, Fu Z, Ou LC, Mathieu-Costello O (1995) Pathogenesis of high-altitude pulmonary oedema: direct evidence of stress failure of pulmonary capillaries. Eur Respir J 8:523–529PubMed West JB, Colice GL, Lee YJ, Namba Y, Kurdak SS, Fu Z, Ou LC, Mathieu-Costello O (1995) Pathogenesis of high-altitude pulmonary oedema: direct evidence of stress failure of pulmonary capillaries. Eur Respir J 8:523–529PubMed
14.
Zurück zum Zitat Hopkins SR, Schoene RB, Henderson WR, Spragg RG, Martin TR, West JB (1997) Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med 155:1090–1094PubMedCrossRef Hopkins SR, Schoene RB, Henderson WR, Spragg RG, Martin TR, West JB (1997) Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med 155:1090–1094PubMedCrossRef
15.
Zurück zum Zitat Dicpinigaitis PV, Mehta DC (1995) Postobstructive pulmonary edema induced by endotracheal tube occlusion. Intensive Care Med 21:1048–1050PubMedCrossRef Dicpinigaitis PV, Mehta DC (1995) Postobstructive pulmonary edema induced by endotracheal tube occlusion. Intensive Care Med 21:1048–1050PubMedCrossRef
Metadaten
Titel
Understanding negative pressure pulmonary edema
verfasst von
Malcolm Lemyze
Jihad Mallat
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 8/2014
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-014-3307-7

Weitere Artikel der Ausgabe 8/2014

Intensive Care Medicine 8/2014 Zur Ausgabe

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Traumatologische Notfälle Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.