Skip to main content
Erschienen in: Clinical Autonomic Research 4/2017

30.06.2017 | Review

Animal and cellular models of familial dysautonomia

verfasst von: Frances Lefcort, Marc Mergy, Sarah B. Ohlen, Yumi Ueki, Lynn George

Erschienen in: Clinical Autonomic Research | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Literatur
2.
Zurück zum Zitat Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed
4.
Zurück zum Zitat Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2016) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2016) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed
5.
Zurück zum Zitat Mendoza-Santiesteban CE et al (2014) Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261(4):702–709CrossRefPubMed Mendoza-Santiesteban CE et al (2014) Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261(4):702–709CrossRefPubMed
6.
Zurück zum Zitat Mendoza-Santiesteban CE et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuroophthalmol 32(1):23–26CrossRefPubMed Mendoza-Santiesteban CE et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuroophthalmol 32(1):23–26CrossRefPubMed
7.
Zurück zum Zitat Mendoza-Santiesteban CE et al. (2017) Pathologic confirmation of optic neuropathy in familial dysautonomia. J Neuropathol Exp Neurol 76(3):238–244CrossRefPubMed Mendoza-Santiesteban CE et al. (2017) Pathologic confirmation of optic neuropathy in familial dysautonomia. J Neuropathol Exp Neurol 76(3):238–244CrossRefPubMed
8.
Zurück zum Zitat Slaugenhaupt SA et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral Slaugenhaupt SA et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Boone N et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral Boone N et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral
11.
12.
Zurück zum Zitat Esberg A et al (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24(1):139–148CrossRefPubMed Esberg A et al (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24(1):139–148CrossRefPubMed
13.
Zurück zum Zitat Laguesse S et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35(5):553–567CrossRefPubMed Laguesse S et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35(5):553–567CrossRefPubMed
14.
Zurück zum Zitat Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161(7):1606–1618CrossRefPubMedPubMedCentral Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161(7):1606–1618CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Karlsborn T et al (2014) Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcmsU in tRNA. Biochem Biophys Res Commun 454(3):441–445CrossRefPubMed Karlsborn T et al (2014) Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcmsU in tRNA. Biochem Biophys Res Commun 454(3):441–445CrossRefPubMed
17.
Zurück zum Zitat Yoshida M et al (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112(9):2764–2769CrossRefPubMedPubMedCentral Yoshida M et al (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112(9):2764–2769CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Otero G et al (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118CrossRefPubMed Otero G et al (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118CrossRefPubMed
19.
Zurück zum Zitat Wittschieben BO et al (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4(1):123–128CrossRefPubMed Wittschieben BO et al (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4(1):123–128CrossRefPubMed
20.
Zurück zum Zitat Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17(6):841–853CrossRefPubMed Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17(6):841–853CrossRefPubMed
21.
Zurück zum Zitat Gardiner J et al (2007) Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9):1145–1149CrossRefPubMed Gardiner J et al (2007) Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9):1145–1149CrossRefPubMed
22.
23.
Zurück zum Zitat Johansen LD et al (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121(Pt 6):854–864CrossRefPubMed Johansen LD et al (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121(Pt 6):854–864CrossRefPubMed
24.
Zurück zum Zitat Lefler S et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral Lefler S et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Naftelberg S et al (2016) Phosphatidylserine ameliorates neurodegenerative symptoms and enhances axonal transport in a mouse model of familial dysautonomia. PLoS Genet 12(12):e1006486CrossRefPubMedPubMedCentral Naftelberg S et al (2016) Phosphatidylserine ameliorates neurodegenerative symptoms and enhances axonal transport in a mouse model of familial dysautonomia. PLoS Genet 12(12):e1006486CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Tourtellotte WG (2016) Axon transport and neuropathy: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol 186(3):489–499CrossRefPubMedPubMedCentral Tourtellotte WG (2016) Axon transport and neuropathy: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol 186(3):489–499CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat George L et al (2013) Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci USA 110(46):18698–18703CrossRefPubMedPubMedCentral George L et al (2013) Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci USA 110(46):18698–18703CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hunnicutt BJ et al (2012) IKAP/Elp1 is required in vivo for neurogenesis and neuronal survival, but not for neural crest migration. PLoS One 7(2):e32050CrossRefPubMedPubMedCentral Hunnicutt BJ et al (2012) IKAP/Elp1 is required in vivo for neurogenesis and neuronal survival, but not for neural crest migration. PLoS One 7(2):e32050CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Jackson MZ et al (2014) A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141(12):2452–2461CrossRefPubMedPubMedCentral Jackson MZ et al (2014) A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141(12):2452–2461CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Addis L et al (2015) Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat 36(9):842–850CrossRefPubMed Addis L et al (2015) Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat 36(9):842–850CrossRefPubMed
31.
Zurück zum Zitat Simpson CL et al (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481CrossRefPubMed Simpson CL et al (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481CrossRefPubMed
32.
Zurück zum Zitat Strug LJ et al (2009) Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 17(9):1171–1181CrossRefPubMedPubMedCentral Strug LJ et al (2009) Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 17(9):1171–1181CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Gkampeta A et al (2014) Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res 108(10):1734–1739CrossRefPubMed Gkampeta A et al (2014) Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res 108(10):1734–1739CrossRefPubMed
35.
Zurück zum Zitat Reinthaler EM et al (2014) Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55(8):e89–e93CrossRefPubMed Reinthaler EM et al (2014) Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55(8):e89–e93CrossRefPubMed
36.
Zurück zum Zitat Cohen JS et al (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am J Med Genet A 167(6):1391–1395CrossRefPubMed Cohen JS et al (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am J Med Genet A 167(6):1391–1395CrossRefPubMed
38.
Zurück zum Zitat Abashidze A et al (2014) Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 9(11):e113428CrossRefPubMedPubMedCentral Abashidze A et al (2014) Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 9(11):e113428CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Cheng WW et al (2015) Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype. World J Gastroenterol 21(7):2040–2046PubMedPubMedCentral Cheng WW et al (2015) Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype. World J Gastroenterol 21(7):2040–2046PubMedPubMedCentral
40.
Zurück zum Zitat Singh N et al (2010) The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 115(2):493–504CrossRefPubMed Singh N et al (2010) The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 115(2):493–504CrossRefPubMed
41.
Zurück zum Zitat Chen C, Tuck S, Bystrom AS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5(7):e1000561CrossRefPubMedPubMedCentral Chen C, Tuck S, Bystrom AS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5(7):e1000561CrossRefPubMedPubMedCentral
42.
43.
Zurück zum Zitat Bar-Shai A et al (2004) Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients. J Neurol Sci 220(1–2):89–94CrossRefPubMed Bar-Shai A et al (2004) Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients. J Neurol Sci 220(1–2):89–94CrossRefPubMed
46.
Zurück zum Zitat Bochner R et al (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22(14):2785–2794CrossRefPubMed Bochner R et al (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22(14):2785–2794CrossRefPubMed
47.
Zurück zum Zitat Chen YT et al (2009) Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 29(3):736–744CrossRefPubMed Chen YT et al (2009) Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 29(3):736–744CrossRefPubMed
48.
Zurück zum Zitat Dietrich P et al (2011) Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 6(10):e27015CrossRefPubMedPubMedCentral Dietrich P et al (2011) Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 6(10):e27015CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Dietrich P et al (2012) IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 21(23):5078–5090CrossRefPubMedPubMedCentral Dietrich P et al (2012) IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 21(23):5078–5090CrossRefPubMedPubMedCentral
50.
51.
Zurück zum Zitat Lyst MJ, Bird A (2015) Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16(5):261–275CrossRefPubMed Lyst MJ, Bird A (2015) Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16(5):261–275CrossRefPubMed
52.
Zurück zum Zitat Close P et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed Close P et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed
53.
Zurück zum Zitat Naumanen T et al (2008) Loss-of-function of IKAP/ELP1: could neuronal migration defect underlie familial dysautonomia? Cell Adh Migr 2(4):236–239CrossRefPubMedPubMedCentral Naumanen T et al (2008) Loss-of-function of IKAP/ELP1: could neuronal migration defect underlie familial dysautonomia? Cell Adh Migr 2(4):236–239CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Chaverra M et al. (2017) The familial dysautonomia disease gene, Ikbkap/Elp1, is required in the developing and adult central nervous system. Dis Model Mech 10(5):605–618CrossRefPubMedPubMedCentral Chaverra M et al. (2017) The familial dysautonomia disease gene, Ikbkap/Elp1, is required in the developing and adult central nervous system. Dis Model Mech 10(5):605–618CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Axelrod FB et al (2010) Neuroimaging supports central pathology in familial dysautonomia. J Neurol 257(2):198–206CrossRefPubMed Axelrod FB et al (2010) Neuroimaging supports central pathology in familial dysautonomia. J Neurol 257(2):198–206CrossRefPubMed
56.
Zurück zum Zitat Ochoa JG (2003) Familial dysautonomia (Riley-Day syndrome) may be associated with epilepsy. Epilepsia 44(3):472CrossRefPubMed Ochoa JG (2003) Familial dysautonomia (Riley-Day syndrome) may be associated with epilepsy. Epilepsia 44(3):472CrossRefPubMed
57.
Zurück zum Zitat Ueki Y et al (2016) Loss of Ikbkap causes slow, progressive retinal degeneration in a mouse model of familial dysautonomia. eNeuro 3(5) Ueki Y et al (2016) Loss of Ikbkap causes slow, progressive retinal degeneration in a mouse model of familial dysautonomia. eNeuro 3(5)
58.
Zurück zum Zitat Carelli V, La Morgia C, Sadun AA (2013) Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol 26(1):52–58CrossRefPubMed Carelli V, La Morgia C, Sadun AA (2013) Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol 26(1):52–58CrossRefPubMed
60.
Zurück zum Zitat Ohlen SB et al (2017) BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci USA 114(19):5035–5040CrossRefPubMed Ohlen SB et al (2017) BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci USA 114(19):5035–5040CrossRefPubMed
61.
62.
Zurück zum Zitat Lee G et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral Lee G et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Valensi-Kurtz M et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral Valensi-Kurtz M et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Zeltner N et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22(12):1421–1427CrossRefPubMed Zeltner N et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22(12):1421–1427CrossRefPubMed
65.
Zurück zum Zitat Boone N et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed Boone N et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed
66.
Zurück zum Zitat Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed
69.
Zurück zum Zitat Wainger BJ et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed Wainger BJ et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed
70.
Zurück zum Zitat Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013) Cyclic vomiting associated with excessive dopamine in Riley-Day syndrome. J Clin Gastroenterol 47(2):136–138CrossRefPubMed Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013) Cyclic vomiting associated with excessive dopamine in Riley-Day syndrome. J Clin Gastroenterol 47(2):136–138CrossRefPubMed
71.
Zurück zum Zitat Macefield VG et al (2016) Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol 115(2):711–716CrossRefPubMed Macefield VG et al (2016) Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol 115(2):711–716CrossRefPubMed
72.
Metadaten
Titel
Animal and cellular models of familial dysautonomia
verfasst von
Frances Lefcort
Marc Mergy
Sarah B. Ohlen
Yumi Ueki
Lynn George
Publikationsdatum
30.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Autonomic Research / Ausgabe 4/2017
Print ISSN: 0959-9851
Elektronische ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-017-0438-2

Weitere Artikel der Ausgabe 4/2017

Clinical Autonomic Research 4/2017 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.