Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2013

01.12.2013

Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos

verfasst von: Tamara A. Potapova, Jin Zhu, Rong Li

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2013

Einloggen, um Zugang zu erhalten

Abstract

Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation, and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggests that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.
Literatur
1.
Zurück zum Zitat Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRef Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRef
2.
Zurück zum Zitat Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press. Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press.
3.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef
5.
Zurück zum Zitat Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.PubMedCrossRef Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.PubMedCrossRef
6.
Zurück zum Zitat Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.PubMedCrossRef Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.PubMedCrossRef
7.
Zurück zum Zitat Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.PubMedCrossRef Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.PubMedCrossRef
8.
Zurück zum Zitat Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337. Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337.
9.
Zurück zum Zitat Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.PubMedCrossRef Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.PubMedCrossRef
10.
Zurück zum Zitat Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.PubMed Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.PubMed
11.
Zurück zum Zitat Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.CrossRef Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.CrossRef
12.
Zurück zum Zitat Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef
13.
Zurück zum Zitat Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.PubMedCrossRef Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.PubMedCrossRef
14.
Zurück zum Zitat Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.PubMedCrossRef Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.PubMedCrossRef
15.
Zurück zum Zitat Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.PubMedCrossRef Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.PubMedCrossRef
16.
Zurück zum Zitat Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.PubMedCrossRef Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.PubMedCrossRef
17.
Zurück zum Zitat Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing. Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing.
18.
Zurück zum Zitat Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.PubMedCrossRef Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.PubMedCrossRef
19.
Zurück zum Zitat Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.PubMedCrossRef Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.PubMedCrossRef
20.
Zurück zum Zitat Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.PubMedCrossRef Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.PubMedCrossRef
21.
Zurück zum Zitat Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.PubMedCrossRef Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.PubMedCrossRef
22.
Zurück zum Zitat Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.PubMedCrossRef Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.PubMedCrossRef
23.
Zurück zum Zitat Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.PubMedCrossRef Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.PubMedCrossRef
24.
Zurück zum Zitat Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.PubMedCrossRef Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.PubMedCrossRef
25.
Zurück zum Zitat Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.PubMedCrossRef Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.PubMedCrossRef
26.
Zurück zum Zitat Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.PubMed Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.PubMed
27.
Zurück zum Zitat Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.PubMedCrossRef Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.PubMedCrossRef
28.
Zurück zum Zitat Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.CrossRef Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.CrossRef
29.
Zurück zum Zitat Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.PubMedCrossRef Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.PubMedCrossRef
30.
Zurück zum Zitat Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.PubMedCrossRef Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.PubMedCrossRef
31.
Zurück zum Zitat Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef
32.
Zurück zum Zitat Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.PubMedCrossRef Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.PubMedCrossRef
33.
Zurück zum Zitat Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.PubMedCrossRef Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.PubMedCrossRef
34.
Zurück zum Zitat Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef
35.
Zurück zum Zitat Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.PubMedCrossRef Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.PubMedCrossRef
36.
Zurück zum Zitat FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef
37.
Zurück zum Zitat Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef
38.
Zurück zum Zitat Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.PubMedCrossRef Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.PubMedCrossRef
39.
Zurück zum Zitat Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.PubMedCrossRef Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.PubMedCrossRef
40.
Zurück zum Zitat Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.PubMedCrossRef Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.PubMedCrossRef
41.
Zurück zum Zitat Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.PubMedCrossRef Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.PubMedCrossRef
42.
Zurück zum Zitat Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.PubMedCrossRef Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.PubMedCrossRef
43.
Zurück zum Zitat Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.PubMedCrossRef Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.PubMedCrossRef
44.
Zurück zum Zitat Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.PubMedCrossRef Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.PubMedCrossRef
45.
Zurück zum Zitat Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.PubMedCrossRef Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.PubMedCrossRef
46.
Zurück zum Zitat Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.PubMedCrossRef Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.PubMedCrossRef
47.
Zurück zum Zitat Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.PubMedCrossRef Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.PubMedCrossRef
48.
Zurück zum Zitat Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.PubMedCrossRef Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.PubMedCrossRef
49.
Zurück zum Zitat Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.PubMedCrossRef Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.PubMedCrossRef
50.
Zurück zum Zitat Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.PubMedCrossRef Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.PubMedCrossRef
51.
Zurück zum Zitat Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.PubMedCrossRef Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.PubMedCrossRef
52.
Zurück zum Zitat Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.PubMedCrossRef Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.PubMedCrossRef
53.
Zurück zum Zitat Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.PubMedCrossRef Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.PubMedCrossRef
54.
Zurück zum Zitat Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.PubMedCrossRef Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.PubMedCrossRef
55.
Zurück zum Zitat Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.PubMedCrossRef Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.PubMedCrossRef
56.
Zurück zum Zitat Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.PubMedCrossRef Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.PubMedCrossRef
57.
Zurück zum Zitat Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.PubMedCrossRef Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.PubMedCrossRef
58.
Zurück zum Zitat Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.PubMedCrossRef Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.PubMedCrossRef
59.
Zurück zum Zitat Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.PubMedCrossRef Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.PubMedCrossRef
60.
Zurück zum Zitat Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedCrossRef Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedCrossRef
61.
Zurück zum Zitat Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedCrossRef Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedCrossRef
62.
Zurück zum Zitat Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef
63.
Zurück zum Zitat Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.PubMedCrossRef Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.PubMedCrossRef
64.
Zurück zum Zitat Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.PubMedCrossRef Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.PubMedCrossRef
65.
Zurück zum Zitat Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.PubMedCrossRef Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.PubMedCrossRef
66.
Zurück zum Zitat Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.PubMedCrossRef Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.PubMedCrossRef
67.
Zurück zum Zitat Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.PubMedCrossRef Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.PubMedCrossRef
68.
Zurück zum Zitat Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.PubMedCrossRef Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.PubMedCrossRef
69.
Zurück zum Zitat Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.PubMedCrossRef Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.PubMedCrossRef
70.
Zurück zum Zitat Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.CrossRef Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.CrossRef
71.
Zurück zum Zitat Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.PubMedCrossRef Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.PubMedCrossRef
72.
Zurück zum Zitat Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.CrossRef Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.CrossRef
73.
Zurück zum Zitat Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.PubMedCrossRef Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.PubMedCrossRef
74.
Zurück zum Zitat Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.PubMedCrossRef Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.PubMedCrossRef
75.
Zurück zum Zitat Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.PubMedCrossRef Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.PubMedCrossRef
76.
Zurück zum Zitat Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef
77.
Zurück zum Zitat Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedCrossRef Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedCrossRef
78.
Zurück zum Zitat Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.PubMedCrossRef Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.PubMedCrossRef
79.
Zurück zum Zitat Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.PubMedCrossRef Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.PubMedCrossRef
80.
Zurück zum Zitat Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.PubMedCrossRef Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.PubMedCrossRef
81.
Zurück zum Zitat Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef
82.
Zurück zum Zitat Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.PubMedCrossRef Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.PubMedCrossRef
83.
Zurück zum Zitat Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.PubMed Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.PubMed
84.
Zurück zum Zitat Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedCrossRef Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedCrossRef
85.
Zurück zum Zitat Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.PubMedCrossRef Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.PubMedCrossRef
86.
Zurück zum Zitat Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMed Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMed
87.
Zurück zum Zitat Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef
88.
89.
Zurück zum Zitat Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.PubMedCrossRef Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.PubMedCrossRef
90.
Zurück zum Zitat Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.PubMedCrossRef Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.PubMedCrossRef
91.
Zurück zum Zitat Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.PubMedCrossRef Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.PubMedCrossRef
92.
Zurück zum Zitat Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef
93.
Zurück zum Zitat Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.PubMedCrossRef Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.PubMedCrossRef
94.
Zurück zum Zitat Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.PubMedCrossRef Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.PubMedCrossRef
95.
Zurück zum Zitat Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.PubMedCrossRef Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.PubMedCrossRef
Metadaten
Titel
Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos
verfasst von
Tamara A. Potapova
Jin Zhu
Rong Li
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2013
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9436-6

Weitere Artikel der Ausgabe 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Zur Ausgabe

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.