Skip to main content
Erschienen in: BMC Surgery 1/2021

Open Access 01.12.2021 | Research article

The risk factors and care measures of surgical site infection after cesarean section in China: a retrospective analysis

verfasst von: Lijun Li, Hongyan Cui

Erschienen in: BMC Surgery | Ausgabe 1/2021

Abstract

Background

Surgical site infections after cesarean section are very common clinically, it is necessary to evaluate the risk factors of surgical site infections after cesarean section, to provide evidences for the treatment and nursing care of cesarean section.

Methods

This study was a retrospective cohort study design. Patients undergone cesarean section in a tertiary hospital of China from May 2017 to May 2020 were identified, we collected the clinical data of the included patients, and we analyzed the infection rate, etiological characteristics and related risk factors of surgical site infection after caesarean section.

Results

A total of 206 patients with cesarean section were included, and the incidence of surgical site infection in patients with cesarean section was 23.30%. A total of 62 cases of pathogens were identified, Enterococcus faecalis (33.87%) and Escherichia coli (29.03%) were the most common pathogens. Both Enterococcus faecalis and Escherichia coli were highly sensitive to Cefoperazone, Meropenem, and Levofloxacin. Logistic regression analyses indicated that Age ≥ 30y (OR 4.18, 95%CI: 1.23–7.09), BMI ≥ 24 (OR 2.39, 95%CI: 1.02–4.55), duration of cesarean section ≥ 1.5 h (OR 3.90, 95%CI: 1.28–5.42), estimated blood loss ≥ 400 ml (OR 2.35, 95%CI: 1.10–4.37) and the duration of urinary catheter ≥ 24 h (OR 3.18, 95% CI: 1.21–5.71) were the independent risk factors of surgical site infection after cesarean section (all p < 0.05).

Conclusions

Age, BMI, duration of surgery, blood loss and urinary catheter use were associated with higher risk of the surgical site infection after cesarean section. Clinical preventions and interventions are warranted for those population to reduce the occurrence of surgical site infection.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body mass index

Background

With advances of blood transfusion, anesthesiology, diversification of surgical methods, improvement of surgical suture materials, cesarean section has become an effective treatment of maternal women [ [1, 2]]. However, the risks of postoperative thrombosis, intraoperative bleeding, uterine rupture, and placenta previa of re-pregnancy after cesarean delivery are significantly higher than those of women delivered via vaginal delivery [35]. Besides, the surgical site infection after cesarean section is a common yet serious complication, which has raised the attentions of health care providers [6]. It’s been reported the incidence of surgical site infection after cesarean section is relatively high, which ranges from 8.18 [7] to 39.17% [8]. Surgical site infection not only affect the prognosis of pregnant women, but also may involve abdominal organs, and even induce diffuse abdominal infections, thereby prolonging the length of hospitalization, and bringing greater psychological and economic burden to the mothers and their families [911]. Therefore, it’s essential to promptly detect the risk factors of surgical site infection after cesarean section, and to understand the etiological characteristics of surgical site infection after cesarean section. Therefore, we aimed to assess the pathogenic characteristics and risk factors of surgical site infection after cesarean section, to provide insights into the management of patients with cesarean section.

Methods

Ethical issue

This study passed the ethical review of the medical ethics committee of Tianjin central hospital of gynecology obstetrics (170,093), and all patients signed the written informed consents.

Participants

Patients undergone cesarean section in our hospital from May 2017 to May 2020 were considered as potential participants, our study is a tertiary hospital specialized in gynecology and obstetrics in Tianjin, China. The inclusion criteria were: ①adult patients with age ≥ 22y; ②the patients underwent cesarean section in our hospital, and the medical records were kept intact; ③patient agreed to participant in our study. The exclusion criteria were: ① patients with severe heart, brain, liver, kidney and other serious disorders; ② patients with tuberculosis or malignant tumor disease; ③patients with local infection or systemic infection symptoms before the admission; ④patients who received the antibacterial treatment before the culture of secretions; ⑤patients who didn’t agree to participant in this study.

Diagnosis of surgical site infection

The diagnostic criteria for surgical site infection were complied with related guidelines [12, 13]: ①the patient's body temperature was higher than 38℃; ②the percentage of neutrophils was higher than 70%, and the white blood cell count was less than 4. 0 × 109/L or higher than 10.0 × 109/L; ③the pathogenic bacteria were cultivated in the incision secretions.

Pathogen detection

We cleaned the incision site with sterile saline, and disposable sterile cotton swab was used to collect 2 mL of incision secretion, and placed it in a sterile test tube after successful collection, and immediately sent it for inspection. Four nurses collected the swab, we conducted a strict training on the specimen collection to make sure the consistency of specimen collection. We intensively cultivated specimens in a suitable medium and cultivate overnight at 35 °C. The BIOFoS automatic bacterial identification instrument (Meisher Diagnostics Co., Ltd., Shanghai) was used to analyze the distribution of pathogens [14]. The pathogenic cultivation, identification and drug sensitivity analysis of the pathogens were conducted in accordance with the relevant procedures [1517], we had taken 25% as the resistance threshold [18]. When the culture result is positive, we isolated and purified the bacteria to analyze and detect the protein components of the strains. After obtaining the characteristic peak spectrum, we collected the peak spectrum and record, and compared it with the pre-stored bacterial profiles in the detection system (Henrui DS2000, Shanghai, China) and made a positive diagnosis based on the degree of agreement between pre-stored bacterial and detected spectrum [19].

SSI preventions

Our hospital strictly controlled the antibiotics use, and all the included patients did not accept the pre-operative antibiotic prophylaxis. We developed health education materials for medical staff and patients' families. Through regular lectures (once every 3 months) to improve the skills of medical staff in infection risk assessment, early identification and control. Besides, nurses were required to talk face-to-face with the patients and their families about the hazards of infection, prevention methods and related precautions, and they distributed the materials of infection prevention. In addition, for cases of surgical site infection, relevant doctors and nurses were required to review the surgical process and analyze patient-related information to discuss the possible causes of its occurrence, and proposed related control recommendations. On this basis, special seminars were organized to discuss correct hand washing methods, disinfection and sterilization techniques, and standardize the skin preparation process. Additionally, we informed the patient that the skin around the incision should be kept clean.

Data collection

We made a follow-up in the period of patients’ stay in hospital, and we collected many personal data and treatment data of patients from the admission record and treatment plans, including age, body mass index (BMI), intraoperative blood loss, duration of cesarean section, estimated blood loss and the duration of urinary catheter, the pathogens of surgical site infection and resistant rate of bacteria to antibiotics.

Data analysis

All of the data analyses were conducted with SPSS 22.0 (SPSS Inc., Chicago, USA). Categorical variables were analyzed with χ2 test or Fisher’s exact test, and continuous variables were analyzed with Student’s t test. p < 0.1 was the significance level to select variables in this study. Multivariate logistic regression analyses were performed using the forward likelihood ratio selection method to identify independent risk factors. Besides, p < 0.05 was considered as being statistically significant in this study.

Results

The characteristics of included patients

A total of 206 patients with cesarean section were included. And 48 patients were diagnosed with surgical site infection, the incidence of surgical site infection was 23.30%. The characteristics of included patients were presented in Table 1.
Table 1
The characteristics of included patients (n = 206)
Items
 
Age (y)
31.24 ± 6.01
BMI (kg/m2)
24.11 ± 3.84
Mean gestational age (w)
35.94 ± 4.17
Duration of cesarean section (h)
1.25 ± 0.74
Estimated blood loss (ml)
387.34 ± 40.89
The duration of urinary catheter (h)
22.82 ± 4.94

Pathogens distribution

As Table 2 presented, a total of 62 cases of pathogens were identified, Enterococcus faecalis (33.87%) and Escherichia coli (29.03%) were the two main pathogens.
Table 2
Distribution of pathogens of surgical site infection after cesarean section (n = 62)
Pathogens
Number
Proportion (%)
Gram-positive bacteria
32
51.61
Enterococcus faecalis
21
33.87
Staphylococcus aureus
5
8.06
Hemolytic Streptococcus
4
6.45
Staphylococcus epidermidis
2
3.23
Gram-negative bacteria
27
43.55
Escherichia coli
18
29.03
Pseudomonas aeruginosa
5
8.06
Enterobacter cloacae
2
3.23
Clostridium perfringens
2
3.23
Fungus
3
4.84
Candida albicans
3
4.84
Enterococcus faecalis were highly sensitive to Cefoperazone, Meropenem, and Levofloxacin. And Enterococcus faecalis were highly resistant to Gentamicin, Ampicillin, Sulfamethoxazole, Amoxicillin and Ceftriaxone

The resistant rate and antibiotic sensitivity

As Table 3 presented, Enterococcus faecalis were highly sensitive to Cefoperazone, Meropenem, and Levofloxacin. And Enterococcus faecalis were highly resistant to Gentamicin, Ampicillin, Sulfamethoxazole, Amoxicillin and Ceftriaxone. Escherichia coli were highly sensitive to Cefoperazone, Meropenem, and Levofloxacin, Cefoxitin and Norfloxacin. And Escherichia coli were highly resistant to Sulfamethoxazole, Ampicillin, Amoxicillin and Ceftriaxone.
Table 3
The resistant rate and antibiotic sensitivity of Enterococcus faecalis and Escherichia coli to antibiotics
Antibiotics
Enterococcus faecalis and Escherichia coli to antibiotics (n = 21)
Escherichia coli to antibiotics (n = 18)
Cases
Resistant rate (%)
Antibiotic sensitivity (%)
Cases
Resistant rate (%)
Antibiotic sensitivity (%)
Levofloxacin
2
7.48
89.14
1
2.13
90.15
Gentamicin
17
73.22
13.87
8
39.55
52.09
Cefepime
5
20.18
77.12
3
10.14
78.33
Piracetam
5
21.94
70.25
3
9.85
87.06
Cefoperazone
0
0
91.18
0
0
93.78
Ampicillin
16
78.03
20.11
11
53.12
33.31
Meropenem
0
0
91.74
0
0
90.27
Sulfamethoxazole
17
74.17
22.08
14
67.09
27.44
Cefoxitin
2
8.72
81.26
1
4.95
86.42
Amoxicillin
13
68.90
30.13
16
74.27
11.29
Ceftriaxone
13
69.17
23.95
11
58.39
40.77
Norfloxacin
2
9.03
87.14
1
4.86
84.02

Single-variate analysis

As Table 4 presented, there were significant differences in the Age ≥ 30y, BMI ≥ 24, duration of cesarean section ≥ 1.5 h, estimated blood loss ≥ 400 ml and the duration of urinary catheter ≥ 24 h between two groups (all p < 0.05), and no significant difference on the mean gestational age ≤ 35 w were found (all p = 0.091).
Table 4
Single variate analysis on the risk factors of surgical site infection after cesarean section
Items
Infection group (n = 48)
No-infection group (n = 158)
χ2
p
Age ≥ 30y
39 (81.25%)
82 (51.89%)
1.128
0.033
BMI ≥ 24
34 (70.83%)
67 (42.41%)
1.096
0.029
Mean gestational age ≤ 35 w
15 (31.25%)
48 (30.38%)
1.631
0.091
Duration of cesarean section ≥ 1.5 h
23 (47.92%)
41 (25.95%)
1.107
0.017
Estimated blood loss ≥ 400 ml
26 (54.17%)
19 (12.06%)
1.266
0.024
The duration of urinary catheter ≥ 24 h
22 (45.83%)
34 (21.52%)
1.182
0.038

Logistic regression analysis

As Table 5 presented, the logistic regression analyses indicated that Age ≥ 30y (OR4.18, 95%CI: 1.23–7.09), BMI ≥ 24 (OR2.39, 95%CI: 1.02–4.55), duration of cesarean section ≥ 1.5 h (OR3.90, 95%CI: 1.28–5.42), estimated blood loss ≥ 400 ml (OR2.35, 95%CI: 1.10–4.37) and the duration of urinary catheter ≥ 24 h (OR3.18, 95%CI: 1.21–5.71) were independent risk factors of surgical site infection after cesarean section (all p < 0.05).
Table 5
The results of logistic regression analysis
Factors
β
S‾x
OR
95%CI
p
Age ≥ 30y
0.85
0.23
4.18
1.23–7.09
0.018
BMI ≥ 24
0.99
0.13
2.39
1.02–4.55
0.027
Duration of cesarean section ≥ 1.5 h
0.83
0.23
3.90
1.28–5.42
0.009
Estimated blood loss ≥ 400 ml
0.66
0.17
2.35
1.10–4.37
0.042
The duration of urinary catheter ≥ 24 h
0.79
0.20
3.18
1.21–5.71
0.012

Discussion

Surgical site infection is one of the common complications of cesarean section, which not only can affect the rehabilitation process, but also extend the length of hospital stay and increase medical-related expenses [20]. Previous studies [21, 22] have reported that the incidence of nosocomial infection in pregnant women after cesarean section is higher than that of women with transvaginal delivery, and the rate of surgical site infections after cesarean section can be as high as 39.86%. In this study, it was found that 23.30% postoperative surgical site infections occurred in pregnant women with cesarean section, which indicates that the risk of surgical site infections after cesarean section is relatively high. It is worth paying attention to the etiological characteristics and related risk factors of postpartum surgical site infection, which are crucial for early prevention and treatment of surgical site infection [23]. The results of this study have indicated that the age ≥ 30y, BMI ≥ 24, duration of cesarean section ≥ 1.5 h, estimated blood loss ≥ 400 ml and the duration of urinary catheter ≥ 24 h were the risk factors for those patients, early preventative strategies are needed for the prophylaxis of surgical site infection.
The etiological characteristics of surgical site infection after cesarean section indicate that Gram-negative bacteria account for 51.61%, Gram-positive bacteria account for 43.55%, and fungi account for 4.84%. And in the related drug sensitivity test, both Enterococcus faecalis and Escherichia coli were highly sensitive to Cefoperazone, Meropenem, and Levofloxacin. The etiological characteristics of surgical site infection can provide clinical guidance for medication and help to better control of infection [24, 25]. Therefore, early bacterial culture of infected wounds and rational use of antibacterial drugs are of great significance for reducing bacterial resistance and extending the window of antibacterial drugs use.
The several risk factors related to surgical site infections should be concerned. Due to the continuous liberalization of China’s second child policy, the maternal age is uneven, and the women with older age have relatively poor tolerance to surgery and immunity, which is an important risk factor for surgical site infection after cesarean section [26]. Besides, during the surgery, a large amount of bleeding may occur, which may cause anemia and even hemorrhagic shock [27]. Blood is an ideal medium for bacterial reproduction, which will increase risk of infection and delay the incision healing [28]. Women with higher BMI tend to have relatively less activity, and long-term bed rest after surgery will affect the body's blood circulation, thereby increasing the risk of surgical site infection [29]. Furthermore, women's urinary tract is closely adjacent to the reproductive tract, but when a urinary tract infection occurs, it easily spreads to the reproductive system, thereby increasing the probability of infection [30]. The longer the urinary catheter stays, the greater the risk of surgical site infection [31].
There are internal and external factors that affect the surgical site infection after cesarean section, and many factors are controllable [32]. The following effective preventive measures may be beneficial. Strengthening health education during pregnancy and conducting regular prenatal examinations to understand the conditions of pregnant women [33]. Obese women should initially control the diet, strengthen exercise to balance the BMI [3436]. Before surgery, patients should be encouraged to urinate on their own [37]. Those who have serious urination problems can be pre-operatively catheterized, but the urinary catheter should be removed as soon as possible [38]. Related studies [39, 40] have shown that the probability of urinary tract infection is as high as more than 90% if the catheterization time exceeds 3 days. Women should be encouraged to choose natural vaginal births whenever possible [41].

Conclusions

In conclusion, for women with age ≥ 30y, BMI ≥ 24, duration of cesarean section ≥ 1.5 h, estimated blood loss ≥ 400 ml and the duration of urinary catheter ≥ 24 h during the cesarean section, targeted intervention should be performed to prevent the surgical site infection. Controlling BMI, reduce the duration of cesarean section, blood loss, duration of urinary catheter is beneficial to the prevention of surgical site infections. However, we do have several limitations in this present study. We have excluded those patients because patients with co-morbidities may have higher risks of surgical site infection in many aspects, it may lead to selection biases, the results should be treated with cautions. Besides, limited by small sample size, more studies are warranted to further elucidate the risk factors of surgical site infection after cesarean section, to provide evidences for the management of cesarean section.

Acknowledgements

None.

Declarations

This study passed the ethical review of the medical ethics committee of Tianjin central hospital of gynecology obstetrics (170093), and all patients had signed the written informed consents.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Ioscovich A, Gozal Y, Shatalin D. Anesthetic considerations for repeat cesarean section. Curr Opin Anaesthesiol. 2020;33(3):299–304.CrossRef Ioscovich A, Gozal Y, Shatalin D. Anesthetic considerations for repeat cesarean section. Curr Opin Anaesthesiol. 2020;33(3):299–304.CrossRef
2.
Zurück zum Zitat Bergholt T, Skjeldestad FE, Pyykonen A, Rasmussen SC, Tapper AM, Bjarnadottir RI, Smarason A, Masdottir BB, Klungsoyr K, Albrechtsen S, et al. Maternal age and risk of cesarean section in women with induced labor at term-A Nordic register-based study. Acta Obstet Gynecol Scand. 2020;99(2):283–9.CrossRef Bergholt T, Skjeldestad FE, Pyykonen A, Rasmussen SC, Tapper AM, Bjarnadottir RI, Smarason A, Masdottir BB, Klungsoyr K, Albrechtsen S, et al. Maternal age and risk of cesarean section in women with induced labor at term-A Nordic register-based study. Acta Obstet Gynecol Scand. 2020;99(2):283–9.CrossRef
3.
Zurück zum Zitat Paulsen CB, Zetner D, Rosenberg J. Incisional hernia after cesarean section: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2020;244:128–33.CrossRef Paulsen CB, Zetner D, Rosenberg J. Incisional hernia after cesarean section: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2020;244:128–33.CrossRef
4.
Zurück zum Zitat Driusso P, Beleza ACS, Mira DM, de Oliveira ST, de Carvalho CR, Ferreira CHJ. de Fatima Carreira Moreira R: Are there differences in short-term pelvic floor muscle function after cesarean section or vaginal delivery in primiparous women? A systematic review with meta-analysis. Int Urogynecol J. 2020;31(8):1497–506.CrossRef Driusso P, Beleza ACS, Mira DM, de Oliveira ST, de Carvalho CR, Ferreira CHJ. de Fatima Carreira Moreira R: Are there differences in short-term pelvic floor muscle function after cesarean section or vaginal delivery in primiparous women? A systematic review with meta-analysis. Int Urogynecol J. 2020;31(8):1497–506.CrossRef
5.
Zurück zum Zitat Nkurunziza T, Kateera F, Sonderman K, Gruendl M, Nihiwacu E, Ramadhan B, Cherian T, Nahimana E, Ntakiyiruta G, Habiyakare C, et al. Prevalence and predictors of surgical-site infection after caesarean section at a rural district hospital in Rwanda. Br J Surg. 2019;106(2):e121–8.CrossRef Nkurunziza T, Kateera F, Sonderman K, Gruendl M, Nihiwacu E, Ramadhan B, Cherian T, Nahimana E, Ntakiyiruta G, Habiyakare C, et al. Prevalence and predictors of surgical-site infection after caesarean section at a rural district hospital in Rwanda. Br J Surg. 2019;106(2):e121–8.CrossRef
6.
Zurück zum Zitat Getaneh T, Negesse A, Dessie G. Prevalence of surgical site infection and its associated factors after cesarean section in Ethiopia: systematic review and meta-analysis. BMC Pregnancy Childbirth. 2020;20(1):311.CrossRef Getaneh T, Negesse A, Dessie G. Prevalence of surgical site infection and its associated factors after cesarean section in Ethiopia: systematic review and meta-analysis. BMC Pregnancy Childbirth. 2020;20(1):311.CrossRef
7.
Zurück zum Zitat Shiferaw WS, Aynalem YA, Akalu TY, Petrucka PM. Surgical site infection and its associated factors in Ethiopia: a systematic review and meta-analysis. BMC Surg. 2020;20(1):107.CrossRef Shiferaw WS, Aynalem YA, Akalu TY, Petrucka PM. Surgical site infection and its associated factors in Ethiopia: a systematic review and meta-analysis. BMC Surg. 2020;20(1):107.CrossRef
8.
Zurück zum Zitat Wodajo S, Belayneh M, Gebremedhin S. Magnitude and factors associated with post-cesarean surgical site infection at Hawassa University teaching and referral Hospital, Southern Ethiopia: a cross-sectional study. Ethiop J Health Sci. 2017;27(3):283–90.CrossRef Wodajo S, Belayneh M, Gebremedhin S. Magnitude and factors associated with post-cesarean surgical site infection at Hawassa University teaching and referral Hospital, Southern Ethiopia: a cross-sectional study. Ethiop J Health Sci. 2017;27(3):283–90.CrossRef
9.
Zurück zum Zitat Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, O’Connor L, Cawthorne J, George RP, et al. Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2018;2:CD012653.PubMed Liu Z, Dumville JC, Norman G, Westby MJ, Blazeby J, McFarlane E, Welton NJ, O’Connor L, Cawthorne J, George RP, et al. Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2018;2:CD012653.PubMed
10.
Zurück zum Zitat Negesse A, Jara D, Habtamu T, Dessie G, Getaneh T, Mulugeta H, Abebaw Z, Taddege T, Wagnew F, Negesse Y. The impact of being of the female gender for household head on the prevalence of food insecurity in Ethiopia: a systematic-review and meta-analysis. Public Health Rev. 2020;41:15.CrossRef Negesse A, Jara D, Habtamu T, Dessie G, Getaneh T, Mulugeta H, Abebaw Z, Taddege T, Wagnew F, Negesse Y. The impact of being of the female gender for household head on the prevalence of food insecurity in Ethiopia: a systematic-review and meta-analysis. Public Health Rev. 2020;41:15.CrossRef
11.
Zurück zum Zitat Adane F, Mulu A, Seyoum G, Gebrie A, Lake A. Prevalence and root causes of surgical site infection among women undergoing caesarean section in Ethiopia: a systematic review and meta-analysis. Patient Saf Surg. 2019;13:34.CrossRef Adane F, Mulu A, Seyoum G, Gebrie A, Lake A. Prevalence and root causes of surgical site infection among women undergoing caesarean section in Ethiopia: a systematic review and meta-analysis. Patient Saf Surg. 2019;13:34.CrossRef
12.
Zurück zum Zitat Leaper DJ, Edmiston CE. World Health Organization: global guidelines for the prevention of surgical site infection. J Hosp Infect. 2017;95(2):135–6.CrossRef Leaper DJ, Edmiston CE. World Health Organization: global guidelines for the prevention of surgical site infection. J Hosp Infect. 2017;95(2):135–6.CrossRef
13.
Zurück zum Zitat Ban KA, Minei JP, Laronga C, Harbrecht BG, Jensen EH, Fry DE, Itani KM, Dellinger EP, Ko CY, Duane TM. American college of surgeons and surgical infection society: surgical site infection guidelines, 2016 update. J Am Coll Surg. 2017;224(1):59–74.CrossRef Ban KA, Minei JP, Laronga C, Harbrecht BG, Jensen EH, Fry DE, Itani KM, Dellinger EP, Ko CY, Duane TM. American college of surgeons and surgical infection society: surgical site infection guidelines, 2016 update. J Am Coll Surg. 2017;224(1):59–74.CrossRef
14.
Zurück zum Zitat Shugang Y, Bing D, Mei H. Analysis of pathogenic bacteria distribution and drug resistance of surgical site infections in patients with acute lower limb arterial ischemia. Chin J Nosoc Infect. 2020;30(7):81–5. Shugang Y, Bing D, Mei H. Analysis of pathogenic bacteria distribution and drug resistance of surgical site infections in patients with acute lower limb arterial ischemia. Chin J Nosoc Infect. 2020;30(7):81–5.
15.
Zurück zum Zitat Jinyuan Y, Beiqing G, Yuli W. Bacteria distribution and drug resistance monitoring of surgical incision infections. Int J Lab Med. 2015;31(14):2101–12. Jinyuan Y, Beiqing G, Yuli W. Bacteria distribution and drug resistance monitoring of surgical incision infections. Int J Lab Med. 2015;31(14):2101–12.
16.
Zurück zum Zitat Yiping Y, Rong Z, Caixia P. Analysis of pathogenic bacteria distribution and risk factors of surgical site infection after artificial hip replacement. Chin J Nosoc Infect. 2019;29(15):2330–3. Yiping Y, Rong Z, Caixia P. Analysis of pathogenic bacteria distribution and risk factors of surgical site infection after artificial hip replacement. Chin J Nosoc Infect. 2019;29(15):2330–3.
17.
Zurück zum Zitat Xiuwen W, Jianan R, Jieshou L. Introduction to the World Health Organization guidelines for the prevention of surgical site infections. Chin J Pract Surg. 2016;36(2):188–92. Xiuwen W, Jianan R, Jieshou L. Introduction to the World Health Organization guidelines for the prevention of surgical site infections. Chin J Pract Surg. 2016;36(2):188–92.
18.
Zurück zum Zitat Jingjing H, Jianmiao W. A prospective study on the incidence and risk factors of surgical site infection after neurosurgery clean incision craniotomy. Chin J Infect Control. 2020;19(1):42–7. Jingjing H, Jianmiao W. A prospective study on the incidence and risk factors of surgical site infection after neurosurgery clean incision craniotomy. Chin J Infect Control. 2020;19(1):42–7.
19.
Zurück zum Zitat Xuan Y, Chengcheng J, Chun G. Analysis of pathogenic characteristics and related factors of surgical site infection after radical gastric cancer surgery. Chin J Nosoc Infect. 2020;30(9):99–102. Xuan Y, Chengcheng J, Chun G. Analysis of pathogenic characteristics and related factors of surgical site infection after radical gastric cancer surgery. Chin J Nosoc Infect. 2020;30(9):99–102.
20.
Zurück zum Zitat Yisma E, Smithers LG, Lynch JW, Mol BW. Cesarean section in Ethiopia: prevalence and sociodemographic characteristics. J Matern Fetal Neonatal Med. 2019;32(7):1130–5.CrossRef Yisma E, Smithers LG, Lynch JW, Mol BW. Cesarean section in Ethiopia: prevalence and sociodemographic characteristics. J Matern Fetal Neonatal Med. 2019;32(7):1130–5.CrossRef
21.
Zurück zum Zitat Gagnon AJ, Van Hulst A, Merry L, George A, Saucier JF, Stanger E, Wahoush O, Stewart DE. Cesarean section rate differences by migration indicators. Arch Gynecol Obstet. 2013;287(4):633–9.CrossRef Gagnon AJ, Van Hulst A, Merry L, George A, Saucier JF, Stanger E, Wahoush O, Stewart DE. Cesarean section rate differences by migration indicators. Arch Gynecol Obstet. 2013;287(4):633–9.CrossRef
22.
Zurück zum Zitat Di Mario S, Cattaneo A, Gagliotti C, Voci C, Basevi V. Baby-friendly hospitals and cesarean section rate: a survey of Italian hospitals. Breastfeed Med. 2013;8(4):388–93.CrossRef Di Mario S, Cattaneo A, Gagliotti C, Voci C, Basevi V. Baby-friendly hospitals and cesarean section rate: a survey of Italian hospitals. Breastfeed Med. 2013;8(4):388–93.CrossRef
23.
Zurück zum Zitat Saeed KB, Corcoran P, Greene RA. Incisional surgical site infection following cesarean section: a national retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2019;240:256–60.CrossRef Saeed KB, Corcoran P, Greene RA. Incisional surgical site infection following cesarean section: a national retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2019;240:256–60.CrossRef
24.
Zurück zum Zitat Committee on Practice B-O: ACOG Practice Bulletin No. 199: Use of Prophylactic Antibiotics in Labor and Delivery. Obstet Gynecol 2018, 132(3):e103-e119. Committee on Practice B-O: ACOG Practice Bulletin No. 199: Use of Prophylactic Antibiotics in Labor and Delivery. Obstet Gynecol 2018, 132(3):e103-e119.
25.
Zurück zum Zitat Shea SK, Soper DE. Prevention of Cesarean Delivery Surgical Site Infections. Obstet Gynecol Surv. 2019;74(2):99–110.CrossRef Shea SK, Soper DE. Prevention of Cesarean Delivery Surgical Site Infections. Obstet Gynecol Surv. 2019;74(2):99–110.CrossRef
26.
Zurück zum Zitat Liu D, Zhang L, Zhang C, Chen M, Zhang L, Li J, Liu G. Different regimens of penicillin antibiotics given to women routinely for preventing infection after cesarean section: a systematic review and meta analysis. Medicine (Baltimore). 2018;97(46):e11889.CrossRef Liu D, Zhang L, Zhang C, Chen M, Zhang L, Li J, Liu G. Different regimens of penicillin antibiotics given to women routinely for preventing infection after cesarean section: a systematic review and meta analysis. Medicine (Baltimore). 2018;97(46):e11889.CrossRef
27.
Zurück zum Zitat Huang HP, Zhao WJ, Pu J, He F. Prophylactic negative pressure wound therapy for surgical site infection in obese women undergoing cesarean section: an evidence synthesis with trial sequential analysis(). J Matern Fetal Neonatal Med. 2019;1:1–8.CrossRef Huang HP, Zhao WJ, Pu J, He F. Prophylactic negative pressure wound therapy for surgical site infection in obese women undergoing cesarean section: an evidence synthesis with trial sequential analysis(). J Matern Fetal Neonatal Med. 2019;1:1–8.CrossRef
28.
Zurück zum Zitat Gong SP, Guo HX, Zhou HZ, Chen L, Yu YH. Morbidity and risk factors for surgical site infection following cesarean section in Guangdong Province, China. J Obstet Gynaecol Res. 2012;38(3):509–15.CrossRef Gong SP, Guo HX, Zhou HZ, Chen L, Yu YH. Morbidity and risk factors for surgical site infection following cesarean section in Guangdong Province, China. J Obstet Gynaecol Res. 2012;38(3):509–15.CrossRef
29.
Zurück zum Zitat Carter EB, Temming LA, Fowler S, Eppes C, Gross G, Srinivas SK, Macones GA, Colditz GA, Tuuli MG. Evidence-Based Bundles and Cesarean delivery surgical site infections: a systematic review and meta-analysis. Obstet Gynecol. 2017;130(4):735–46.CrossRef Carter EB, Temming LA, Fowler S, Eppes C, Gross G, Srinivas SK, Macones GA, Colditz GA, Tuuli MG. Evidence-Based Bundles and Cesarean delivery surgical site infections: a systematic review and meta-analysis. Obstet Gynecol. 2017;130(4):735–46.CrossRef
30.
Zurück zum Zitat Moulton LJ, Munoz JL, Lachiewicz M, Liu X, Goje O. Surgical site infection after cesarean delivery: incidence and risk factors at a US academic institution. J Matern Fetal Neonatal Med. 2018;31(14):1873–80.CrossRef Moulton LJ, Munoz JL, Lachiewicz M, Liu X, Goje O. Surgical site infection after cesarean delivery: incidence and risk factors at a US academic institution. J Matern Fetal Neonatal Med. 2018;31(14):1873–80.CrossRef
31.
Zurück zum Zitat Azeze GG, Bizuneh AD. Surgical site infection and its associated factors following cesarean section in Ethiopia: a cross-sectional study. BMC Res Notes. 2019;12(1):288.CrossRef Azeze GG, Bizuneh AD. Surgical site infection and its associated factors following cesarean section in Ethiopia: a cross-sectional study. BMC Res Notes. 2019;12(1):288.CrossRef
32.
Zurück zum Zitat Todd B. New CDC Guideline for the Prevention of Surgical Site Infection. Am J Nurs. 2017;117(8):17.CrossRef Todd B. New CDC Guideline for the Prevention of Surgical Site Infection. Am J Nurs. 2017;117(8):17.CrossRef
33.
Zurück zum Zitat Alfouzan W, Al Fadhli M, Abdo N, Alali W, Dhar R. Surgical site infection following cesarean section in a general hospital in Kuwait: trends and risk factors. Epidemiol Infect. 2019;147:e287.CrossRef Alfouzan W, Al Fadhli M, Abdo N, Alali W, Dhar R. Surgical site infection following cesarean section in a general hospital in Kuwait: trends and risk factors. Epidemiol Infect. 2019;147:e287.CrossRef
34.
Zurück zum Zitat O’Hara LM, Thom KA, Preas MA. Update to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the Prevention of Surgical Site Infection (2017): A summary, review, and strategies for implementation. Am J Infect Control. 2018;46(6):602–9.CrossRef O’Hara LM, Thom KA, Preas MA. Update to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the Prevention of Surgical Site Infection (2017): A summary, review, and strategies for implementation. Am J Infect Control. 2018;46(6):602–9.CrossRef
35.
Zurück zum Zitat Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, Gomes SM, Gans S, Wallert ED, Wu X, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.CrossRef Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, Gomes SM, Gans S, Wallert ED, Wu X, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.CrossRef
36.
Zurück zum Zitat Martin EK, Beckmann MM, Barnsbee LN, Halton KA, Merollini K, Graves N. Best practice perioperative strategies and surgical techniques for preventing caesarean section surgical site infections: a systematic review of reviews and meta-analyses. BJOG. 2018;125(8):956–64.CrossRef Martin EK, Beckmann MM, Barnsbee LN, Halton KA, Merollini K, Graves N. Best practice perioperative strategies and surgical techniques for preventing caesarean section surgical site infections: a systematic review of reviews and meta-analyses. BJOG. 2018;125(8):956–64.CrossRef
37.
Zurück zum Zitat American College of O, Gynecologists' Committee on Practice B-G: ACOG Practice Bulletin No. 195: prevention of infection after gynecologic procedures. Obstet Gynecol 2018, 131(6):e172-e189. American College of O, Gynecologists' Committee on Practice B-G: ACOG Practice Bulletin No. 195: prevention of infection after gynecologic procedures. Obstet Gynecol 2018, 131(6):e172-e189.
38.
Zurück zum Zitat Chinese Society of Surgical I, Intensive Care CSoSCMA, Chinese College of Gastrointestinal Fistula Surgeons CCoSCMDA: [Chinese guideline for the prevention of surgical site infection]. Zhonghua Wei Chang Wai Ke Za Zhi 2019, 22(4):301–314. Chinese Society of Surgical I, Intensive Care CSoSCMA, Chinese College of Gastrointestinal Fistula Surgeons CCoSCMDA: [Chinese guideline for the prevention of surgical site infection]. Zhonghua Wei Chang Wai Ke Za Zhi 2019, 22(4):301–314.
39.
Zurück zum Zitat Lazar HL, Salm TV, Engelman R, Orgill D, Gordon S. Prevention and management of sternal wound infections. J Thorac Cardiovasc Surg. 2016;152(4):962–72.CrossRef Lazar HL, Salm TV, Engelman R, Orgill D, Gordon S. Prevention and management of sternal wound infections. J Thorac Cardiovasc Surg. 2016;152(4):962–72.CrossRef
40.
Zurück zum Zitat Borchardt RA, Tzizik D. Update on surgical site infections: the new CDC guidelines. JAAPA. 2018;31(4):52–4.CrossRef Borchardt RA, Tzizik D. Update on surgical site infections: the new CDC guidelines. JAAPA. 2018;31(4):52–4.CrossRef
41.
Zurück zum Zitat Wilson RD, Caughey AB, Wood SL, Macones GA, Wrench IJ, Huang J, Norman M, Pettersson K, Fawcett WJ, Shalabi MM, et al. Guidelines for Antenatal and Preoperative care in Cesarean Delivery: Enhanced Recovery After Surgery Society Recommendations (Part 1). Am J Obstet Gynecol. 2018;219(6):523.CrossRef Wilson RD, Caughey AB, Wood SL, Macones GA, Wrench IJ, Huang J, Norman M, Pettersson K, Fawcett WJ, Shalabi MM, et al. Guidelines for Antenatal and Preoperative care in Cesarean Delivery: Enhanced Recovery After Surgery Society Recommendations (Part 1). Am J Obstet Gynecol. 2018;219(6):523.CrossRef
Metadaten
Titel
The risk factors and care measures of surgical site infection after cesarean section in China: a retrospective analysis
verfasst von
Lijun Li
Hongyan Cui
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2021
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-021-01154-x

Weitere Artikel der Ausgabe 1/2021

BMC Surgery 1/2021 Zur Ausgabe

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.