Skip to main content
Erschienen in: Experimental Hematology & Oncology 1/2015

Open Access 01.12.2015 | Review

New frontiers for platelet CD154

verfasst von: Antoine Dewitte, Annabelle Tanga, Julien Villeneuve, Sébastien Lepreux, Alexandre Ouattara, Alexis Desmoulière, Christian Combe, Jean Ripoche

Erschienen in: Experimental Hematology & Oncology | Ausgabe 1/2015

Abstract

The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to the writing of the manuscript. All authors read and approved the manuscript.

Introduction

Platelets are cytoplasmic fragments released in the bloodstream during the fragmentation of polyploid megakaryocytes (MK), a phenomenon critically dependent on thrombopoietin [1-3]. The mammalian platelet is thought to result from a phylogenic trend to ensure hemostasis under high vascular shear forces; indeed, it can specifically form arterial thrombi sustaining high shear stress [4]. It is thought that the platelet coopted attributes of a nucleated cell ancestor endowed with a multifunctional role in coagulation, inflammation and defense against infections [5,6]. Platelets have a short lifespan, of around 7 days; mechanisms responsible for their clearance are ill-understood; lectin-carbohydrate recognition of aged and damaged platelets by splenic and liver macrophages and hepatocytes is emphasized [7]. The best-defined function of platelets is hemostasis. Disruption of the endothelial cell (EC) lining leads to platelet activation, platelet adherence and aggregation which temporarily plug the damaged vessel. In this process, platelets also drive and confine coagulation at sites of tissue damage. Indeed, deficiencies in platelet production or function are associated to bleeding disorders, while increases in platelet number or gain of function are associated to thrombosis. The role of platelets in health and disease extends beyond hemostasis; non-hemostatic platelet functions include inflammation, innate and adaptative immune responses and tissue homeostasis (Figure 1). Decisive advances in understanding platelet function have been made through the characterization of platelet receptors and their ligands and platelet-derived mediators [8]. Among platelet mediators, CD154, the ligand of CD40, has attracted specific attention as it orchestrates many of these new platelet attributes.

CD154

CD154, the CD40 ligand, a member of the Tumor Necrosis Factor (TNF) family, is central to the immune response [9,10]. CD154 was discovered as mediating humoral immunity and was originally considered to be restricted to activated helper T cells. The CD154/CD40 interaction drives B cell proliferation, antibody production and isotype switching and is involved in thymic selection. This interaction is required for B memory cell generation and germinal center formation. Accordingly, CD154 deficiency is associated with an impairment of the humoral immune response to T-cell dependent antigens, including defective immunoglobulin class switching; patients with the X-linked hyper-IgM syndrome caused by mutations of the CD154 gene, generally present low serum IgG and IgA, but normal or increased serum IgM, and are susceptible to opportunistic infections. Mice with a disrupted Cd154 gene fail to undergo isotype switching to T-cell dependent antigens while normally responding to T-cell independent antigens. In line with its regulatory role on the adaptative immune response, the CD40/CD154 interaction contributes to autoimmune disorders in a number of animal models [11-15]. Manipulation of the CD154/CD40 interaction has been used in efforts to develop novel strategies in autoimmune diseases, results in animal models being encouraging [13]. Clinical trials have been launched with humanized anti-CD154 monoclonal antibodies. Clinical interest of this strategy remains mixed, and is strongly limited by thrombotic complications [12-14].
Apart from B cells, CD40 is expressed by various cells, including dendritic cells (DC), monocytes, T lymphocytes, EC, a variety of epithelial cells, smooth muscle cells, fibroblasts; its expression is low in basal conditions and is stimulated by inflammatory mediators [16-19]. CD40 expression is increased by CD154, however it is not known whether this induction is direct or indirect [20,21]. CD40 is not the sole receptor for CD154; alternative receptors have been described, such as integrins α5β1, αIIbβ3 and αMβ2; CD154 binding depends on their activation states [22-25]. These additional receptors are of significance in the pathophysiology of atherogenesis and are important to consider when comparing CD40- and CD154-deficient mouse phenotypes.
CD154 is a transmembrane protein and a proteolytic soluble form, sCD154, which keeps the CD40-binding domain, is released by a partially understood mechanism. The release of sCD154 was first documented in activated T-lymphocytes [26]. CD154 has a trimeric configuration, required for functional activity [27-30]. A complex signaling cascade is triggered by CD40 ligation, involving TNF receptor-associated factors (TRAF) as proximal transducing signal initiators [10,20]. Several signaling pathways, including nuclear factor-κB (NF-κB), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways, are activated by CD40 ligation; however, there is a differential outcome depending upon which TRAF member binds preferentially, and which cell/conditions are involved [31]; the binding of TRAF-6 is critical in vascular inflammation and metabolic complications associated with obesity [32,33].
CD154 expression is also observed in natural killer cells, DC, cells of the monocyte/macrophage lineage, endothelial, smooth muscle and epithelial cells [20]. Basal CD154 expression is very low, or undetectable, as in EC and epithelial cells for example [34], and is increased by a variety of stimuli, most notably inflammatory cytokines [20]. This suggests that CD154 expression may mostly have relevance when induced, as in inflammation. CD154 is also expressed by blood platelets, being cryptic in unstimulated platelets and rapidly exposed at the platelet surface following platelet activation [35].

CD154 expression by platelets

The distribution of CD154 in platelets is partly understood. CD154 was found in α-granules, as shown by immunoelectron microscopy or quantitative immunofluorescence approaches [36,37]. Accordingly, patients presenting a Gray-platelet syndrome, are characterized by platelets that lack α-granules, and do not release CD154 upon activation [37]. CD154 is highly coclustered with insulin growth factor in α-granules, the signification of which is unknown [36]. One question is whether CD154 is also cytosolic, as found in resting platelets [38].
Pre-mRNAs and mature mRNAs are present in platelets and a functional spliceosome and translational apparatus allow platelets to process them, in response to platelet-activating signals [39,40]. Detecting CD154 mRNA by RT-PCR in platelets is challenging because of purity issues. However, CD154 mRNA was evidenced in mouse platelets, introducing other potential regulatory layers of CD154 expression by platelets [34].

When activated, platelets express a membrane form and release a soluble form of CD154

Platelets are activated by immobilized or soluble agonists. The activation-driven secretion of granule content is a primary phenomenon [41-46]. Platelets also synthetize mediators, including interleukin-1β, tissue factor (TF), fibrinogen, thrombospondin, von Willebrand Factor, αIIbβ3, through a translational-dependent pathway triggered by platelet activation [47,48].
Soluble CD154 is released by an activation-driven proteolytic mechanism. Agonists, including thrombin, thrombin receptor-agonist peptide, ADP or collagen, stimulate CD154 expression at the platelet membrane and the release of sCD154; long-term platelet activation leads to complete conversion of CD154 to sCD154 [38,49-53]. A matrix metalloproteinase (MMP)-dependent proteolytic event is involved. The involvement of MMPs, MMP-2 and/or MMP-9, [51,54-57], differs from the release of sCD154 by activated T-cells, which involves ADAM10 and 17 [58]. A role for αIIb/β3 has been put forward, as αIIb/β3 antagonists inhibit sCD154 release and as Glanzmann platelets show reduced sCD154 release rate [53,54,59]. An interaction between αIIb/β3 and MMP-2 is involved [57]. The roles of NADPH activation and reactive oxygen species (ROS) generation as well as CD154 binding to platelet CD40 have been underlined [50,60]. The particularity of sCD154 release may explain its specific response to agonists and secretion kinetics [38,53]; however, how sCD154 is released remains be fully understood, as shown for example by the effects of inhibitors added after platelet activation, suggesting complex, intra-platelet mechanisms [53]. A debate remains about the parallel biological activities of platelet-derived soluble and membrane-associated CD154; recombinant soluble forms, particularly trimeric forms, are active [50,61-63]. Finally, sCD154 activates platelets by itself, suggesting feed-back amplification of its secretion [64,65].

The megakaryocytic origin of platelet CD154

The assembly and loading of granules mainly occur in MK; granules are distributed in proplatelets via a microtubule-dependent mechanism [2,66,67]. The main origin of platelet CD154 is likely to be the MK that express CD154 mRNA, as shown in MK derived by differentiation of human and mouse hematopoietic progenitor cells and in MK of immune thrombocytopenic purpura (ITP) patients [68,69]. CD154 mRNA expression is increased upon MK differentiation [69]. CD154 protein is also found in MK cell lines and in MK from ITP patients [38,68,69]. As for T cells, the calcium-dependent activation of nuclear factor of activated T cells-c2 and the early growth response transcription factor EGR-1 contribute to CD154 gene activation in MK [69,70].
Translation from endogenous mRNAs contributes to platelet content. Its significance in quiescent platelets is unclear. However, pre-mRNA processing and mRNA translation are driven by platelet activation [40,48,71]. The contribution of such mechanism in CD154 expression during platelet lifespan is unknown.
Platelets also carry mediators present in plasma and possibly concentrated and/or modified within platelets [72,73]. Fibrinogen, albumin, immunoglobulins, amino acids, inflammatory and angiogenic mediators including vascular endothelial growth factor (VEGF), histamine or serotonin, are among them. Soluble CD154 is not detected in platelets, making unlikely its uptake from plasma.

Platelets are a significant reservoir of CD154 in the organism

Platelets carry approximately 5 ng of CD154/mL of blood [52]. Correlation studies suggest a link between platelet count and plasma or serum sCD154 [37,52,74-78]. Such a correlation is also found in experimental ITP [78]. In ITP, albeit platelet CD154 is elevated [68], plasma sCD154 is reduced [78], again suggesting relationship between the platelet count and circulating sCD154. However, there are contrasting studies, and a correlation between the platelet count and sCD154 is not always found [79,80].
Importantly, platelet activation is associated to elevated sCD154 and, indeed, platelet activation markers correlate with sCD154 in blood [81-83]. For this reason, serum seems inappropriate to evaluate circulating sCD154; in fact, sCD154 levels are higher in serum than in plasma, clotting resulting in increased sCD154 generation [52,79,80,84-88]. Hence the importance of a preanalytical standardization of blood samples processing, conditions such as temperature, length of storage, centrifugation, interfering with measurement [84,89]. Further, plasma/serum sCD154 may correspond to a pool of free soluble and microparticle-bound CD154 [84] and ELISA may not discriminate between sCD154 and platelet microparticles (PMP)-associated CD154 [90]. Circulating sCD154 is linked to platelet activation state; in patients with recent thrombotic events, plasma sCD154 correlates with platelet count, but this correlation is not found in patients with non-thrombotic, non-inflammatory conditions [84]. Finally, in patients with cardiovascular conditions, commonly used drugs such as statins, interfere with sCD154 releasing, a point that has also to be considered [91-93]. The baseline presence of sCD154 in the plasma of healthy subjects may be secondary to basal platelet activation, as in high shear stress flow areas [94]. PMP are released upon platelet activation [95]. A functional CD154 is expressed by PMP [63,96]. The importance of the contribution of PMP-bound CD154, in comparison with the “true” soluble CD154, to plasma sCD154 has been emphasized [90]. Questions also remain on the fate and half-life of sCD154 in blood and how the CD154 information can be delivered at distance from platelet activation sites.

Platelet CD154: a critical mediator of the inflammatory reaction

Platelets orchestrate a subtle balance between tissue injury and repair; they are a key source of material for reestablishing tissue homeostasis but they also contribute to tissue injury. CD154 mediates several platelet functions in tissue homeostasis (Figure 2).
Platelet CD154 and inflammation
Regardless of its cause, the inflammatory milieu is rich in platelet-activating material, including chemokines [98]. The dialog between EC and platelets in inflammation has been widely studied as EC are primary platelet partners. Upon CD40 ligation, EC switch to an activated phenotype, expressing molecules that contribute to an inflammatory and thrombotic scenario, including cytokines/chemokines, adhesion molecules, and tissue factor [16,20,99]. Platelets/EC reciprocal activation is critical in atherosclerosis and cardiovascular conditions [100-103]. The pathogenic role of platelet CD154 is a major theme in atherosclerosis and cardiovascular diseases [25,62,74,100-109].
The role of platelet CD154 in inflammation extends beyond the dialog with EC, as activated platelets interact with various CD40 expressing-cells. Platelets are brought to inflammatory sites via vascular injury/permeability, attachment to activated leukocytes, and also chemotactic recruitment [110]. CD40 ligation on inflammatory cells at sites of tissue injury is a potent stimulus for the expression of a variety of proinflammatory mediators including cytokines, chemokines, eicosanoids, products of the proteolytic cascades, ROS generation, and of adhesion molecules [49,111], making platelet CD154 a versatile fuel for inflammation. The platelet contribution in many inflammation-associated disorders, including rheumatic, lung, gastrointestinal, neuro-inflammatory and metabolic diseases is actively studied [112-120] and the specific pathogenic role played by platelet CD154 in these disorders is a recently opened frontier. Soluble CD154 levels were found to correlate with disease activity as in systemic lupus erythematosus [121]; whether sCD154 could represent a potential useful marker in inflammation-associated disorders is an interesting question. PMP also contribute to inflammatory disorders [122-128]; the specific role of PMP-associated CD154 remains however to be fully understood.
Platelet CD154 and tissue repair
The effectors of inflammation are orchestrated to cure infection and restore tissue integrity [129-131]. At various steps of tissue repair, platelets are a source of relevant material, including growth factors, pro- and anti-apoptotic mediators, matrix and matrix remodeling proteins [132-135] (Figure 1). Platelets contribute to maintain resting and injured endothelium integrity [136]. On injured endothelium, platelets provide EC growth-promoting and anti-apoptotic mediators, attractants for progenitor cells endowed with vascular healing properties [135]. They contribute to restoring the vascular network, by secreting regulators of angiogenesis [137-139]. Beyond endothelium, a remarkable role for platelets in organ regeneration has been substantiated. Platelets contribute to liver regeneration, serotonin being essential [140-142]. It is tempting to speculate that platelets will be found to have a broader role in organ regeneration by providing key mitogenic signals in various organs, such as for example fibroblast growth factor or platelet-derived growth factor that contribute to muscle or brain repair [143,144]. This is also in line with the known ability of platelet lysates to sustain the growth of primary cell cultures. PMP also contribute to vascular integrity [145-148] and promote tissue repair [128,149]. Platelet products have already found various applications in the clinics [150-154].
The specific role of CD154 has been mainly studied in EC. CD154 promotes EC survival, proliferation and migration, capillary-like tube formation in vitro and angiogenesis in vivo. Mechanisms include activation of the phosphatidylinositol-3 kinase/Akt pathway, induction of angiogenic mediators and matrix remodeling protein production [155-157]. CD40 signaling contributes to neointima repair, TRAF6 signaling intermediate being critical [32,158,159]. However, platelet CD154 was shown to inhibit the VEGF-induced EC migration via increased ROS generation, and sCD154 to inhibit VEGF-induced angiogenesis [160]. Soluble CD154 also promotes oxidative stress in endothelial outgrowth cells (EOC), reducing their viability and proliferation [161], while promoting endothelial repair via increased production of MMP-9 by EOC [162]. These findings may be context-dependent; they emphasize the importance of platelet CD154 in vascular homeostasis and the complexity of its biological interfaces. Other tissues for which platelet CD154 is likely to show importance for repair are skin and bone. CD40 ligation stimulates keratinocyte differentiation, suggesting contribution to skin wound repair [163]. Regulation of osteoclastogenesis by CD154 is suggested by the reduced bone mineral density together with elevated urine markers of osteoclast activity in patients with the X-linked hyper-IgM syndrome, and the reduced bone mineral density in CD154 deficient mice [164,165]. CD40 is expressed by osteoblastic cells and CD154 is anti-apoptotic in these cells [166]. Therefore, much remains to be found about the role of platelet CD154 in tissue repair. As CD40 is largely distributed, platelet CD154 could be conjectured to be generally involved, to one degree or another, in tissue repair.
Platelet CD154 as a mediator of tissue injury
The model of platelets promoting tissue repair is to be compared to their deleterious role in acute and chronic tissue injury. Difficult points are raised by this friend or foe facet, implicating balanced therapeutic approaches [119]. Ischemia/reperfusion (I/R) underscores platelet deleterious role, and the importance to control platelet activation in this context. In I/R, platelet activation in the microcirculation vascular bed leads to tissue injury, as shown in lung, liver or kidney. Platelet depletion or antiplatelet treatments are protective in several experimental I/R models [167-169]; CD154 is contributing: mice deficient in CD154 are protected from I/R-mediated injury in brain, lung, liver or intestine; in lung I/R-mediated injury platelet CD154 is specifically contributing [170-172].

Platelet CD154 and the immune response: unanticipated new frontiers

Platelets participate to the control of infection via direct and indirect mechanisms [6,173-178]. The significance of platelet Toll-like receptors (TLR) has been emphasized; TLR ligation activates platelet secretion of mediators regulating the immune response, including sCD154 [6,179-184]. Platelets also regulate several steps of the adaptative immune response [6,182-194]. Moreover, platelets can present antigen [195]; they express MHC class I molecules and T cell costimulatory molecules, including CD86 and CD40 and harbor a functional proteasome [196-199]. Among platelet mediators, CD154 proved to be critical in linking platelet and immunity (Figure 3).
Although much remains to be understood, particularly with reference to the innate immune response, the specific role of platelet CD154 in immunity is strengthening. Several pathogen-clearing mechanisms are stimulated by CD154, including platelet aggregation [173], phagocytosis and production of defense proteins, such as complement proteins and interferon-α, by cells of the innate immune system [6,20,201]. CD40 contributes to the regulation of innate immune response, including induction of TLR expression, cooperation in TLR-mediated B cell activation, engagement in the crosstalk between intracellular MHC class II molecules and TLR signaling pathway [202-204]. The specific role of platelet CD154 in these mechanisms remains to be precised. However, it is now appreciated that platelet CD154 controls many facets of the interface between innate and adaptive immune responses [173,187,191,205]. Platelet CD154 induces DC maturation, can activate B cells, antibody production and isotype switching, contributes to germinal center formation, and enhances CD8+ T cell responses [188,206-213]. Platelet CD154 helps mounting a protective cytotoxic T cell immune response to viral or bacterial challenge [206,214]. Platelet CD154 may promote the immune response in the context of low antigen challenge by lowering the antigen threshold, and improve B cell response in regulatory T-cell limiting settings [210,215]. Further, sCD154 per se induces cardiac allograft rejection [212]. Many questions remain. How platelet CD154 enters the draining lymph nodes to regulate the adaptive immune response machinery is not known; PMP may convey this information, as CD154 associated to PMP is functional: it enhances DC activation, germinal center formation, B cell proliferation and IgG production [63,216]. Several questions are also raised with reference to platelet CD154 in autoimmunity; this “dark side” [14,217] feature of platelet CD154 is a recently opened frontier. Platelet CD154 is competent to increase production of antiplatelet antibodies in immune thrombocytopenic purpura [68] and, in systemic lupus erythematosus, platelet CD154 activates antigen presenting cells contributing to enhanced interferon-α production [218].

Platelet CD154: a new hematopoietic regulator?

Hematopoiesis can be adapted in response to inflammation/infection by signals generated at bone marrow distal sites [219-224]. Platelets are activated at sites of inflammation/infection and are a major source of circulating sCD154. Could platelets deliver a CD154 signal, through sCD154, platelet- or PMP-associated CD154 that regulates hematopoiesis? Platelet mediators enhance hematopoietic stem cell proliferation and platelet-derived signals may contribute to CD34+ cell mobilization [225,226]. Several studies have demonstrated CD154 involvement in hematopoiesis. CD154 regulation of early B cell lymphopoiesis is suggested by the sCD154-induced increased number of B cell progenitors (BCP) in mice after bone marrow transplantation (BMT) [227]. CD40 is expressed on BCP, and a positive effect of CD40 ligation on BCP proliferation can be observed on pre- and immature B cells in human and pro-B cells in the mouse [228,229]. In the mouse, there is clear experimental evidence for a positive role of CD154 in B cell hematopoiesis and, particularly in stress conditions, as after BMT [229]. However, normal numbers of circulating B cells in patients with X-linked hyper-IgM syndrome would rule out an absolute requirement for the CD154/CD40 signaling in early B cell development. CD154 may therefore mostly play a significant role in emergency B cell hematopoiesis [229]. More is known about CD154 regulation of the lymphoid system maturation, which has been fully reviewed [230]. A role for platelet CD154 on myelopoiesis is suggested by the sCD154-mediated increased granulocyte and platelet recovery after BMT in the mouse and by the neutropenia and thrombocytopenia observed in patients with X-linked hyper-IgM syndrome [227]. In vitro, sCD154 promotes the differentiation of CD34+ cells towards the granulocytic/monocytic and megakaryocytic lineages in CD34+/stromal cell cocultures. The mode of action of sCD154 appears to be essentially indirect, through the induction of hematopoietic cytokines by bone marrow stromal cells [231,232]. Platelet CD154 may therefore play a role in regulating emergency hematopoiesis. However, many questions remain unsolved, particularly which and how platelet CD154 signals could be delivered and interact with bone marrow stem/progenitor cells.

Platelet CD154 and cancer: a rapidly expanding frontier

There is strong evidence for the involvement of platelets in cancer progression; mechanisms are multiple [233-240]. Platelets are activated in the tumor environment and bind tumor cells. Mediators released upon platelet activation are key to tumor angiogenesis [241,242] and are likely to contribute to the tumor-supporting inflammatory environment [243,244]. Platelets play a positive role in metastasis [234,238,245-249]. However, this may not be true for all organs [250]. In hematogenous dissemination, platelet/cancer cell microthrombi provide protection, including shielding from shear flow, or immune evasion; during the arrest and extravasation phases, platelet mediators facilitate tumor cell arrest on EC, extravasation, survival and growth after seeding [251]. Platelet MPs are also contributing [124,252,253].
Many tumor cells express CD40. The outcomes of CD40 ligation on tumor cells are ambivalent depending on the models studied. In one hand, CD40 ligation promotes anti-tumor immune surveillance through a variety of mechanisms including antigen-presenting cell activation, restoration of malignant cell immune recognition, activation of tumoricidal-infiltrating macrophages, immunostimulatory cytokine production. CD40 ligation also induces tumor growth arrest and sensitization to apoptotic signals. On the other hand, CD40 ligation has positive consequences on tumor growth, survival and resistance to chemotherapy and metastatic potential. The interpretation of CD154 effects on cancer cells is made complex, first by the existence of several receptors for CD154, potentially explaining variable outcomes of CD154 treatment of tumor cells, and second, by the difficulty in assessing direct versus indirect effects. The contribution of the CD40 signaling in cancer, and prospects offered by targeting the CD40 signaling for cancer treatment have recently been underlined and reviewed [254-258]. However, the specific role played by platelet CD154 remains a new important frontier. If platelet activation is likely to result in expression of CD154 and generation of sCD154 in the tumor cell environment, this study is made complex as there are extra platelet sources of CD154.

Conclusion

There have been recent and rapid advances in our current knowledge of the non-hemostatic functions of platelets, placing them in the middle of the spectrum of mechanisms that maintain homeostasis, and highlighting their role in a variety of inflammatory and immune disorders. However, platelets store and release such a wide diversity of biologically active mediators that major gaps remain in our understanding of which and how these mediators collectively fulfill these functions. Platelet CD154 has attracted considerable attention as it recapitulates several of non-hemostatic platelet attributes. Considering the large number of different cells expressing CD40, the complex signaling cascade and the wide range of effectors activated by the CD154/CD40 interaction, it can be anticipated that future investigations will further extend the contribution of platelet CD154 in health and disease. For example, recent publications on the CD154/CD40 dyad have pointed to its role in obesity and hepatic steatosis [259-263], and it is tempting to speculate that platelet CD154 contributes to metabolic homeostasis. In the same direction, the number of physiological or pathological conditions associated with platelet activation is enlarging. For example, platelet activation has been found associated to aging, to emotional or environmental stresses…; platelet CD154 might represent a significant link between these conditions and accompanying pathologies, such as cardiovascular events [264]. However, platelet CD154 is always acting in a multicytokine context, including inhibitors and activators released at the same time by platelets; understanding how this complexity is tuned and evidencing the specific role of platelet CD154 remains a difficult challenge.

Acknowledgments

A.T. acknowledges support from the Amadeus LabEx, Université de Bordeaux. J.V. acknowledges support from a Marie Curie international outgoing fellowship within the 7th European community framework program. The support of the Association pour la Recherche en Néphrologie is acknowledged.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to the writing of the manuscript. All authors read and approved the manuscript.
Literatur
3.
4.
Zurück zum Zitat Schmaier AA, Stalker TJ, Runge JJ, Lee D, Nagaswami C, Mericko P, et al. Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood. 2011;118(13):3661–9.PubMedCentralPubMedCrossRef Schmaier AA, Stalker TJ, Runge JJ, Lee D, Nagaswami C, Mericko P, et al. Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood. 2011;118(13):3661–9.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost. 2003;1(9):1897–905.PubMedCrossRef Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost. 2003;1(9):1897–905.PubMedCrossRef
6.
Zurück zum Zitat Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.PubMedCrossRef Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.PubMedCrossRef
9.
Zurück zum Zitat Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111–35.PubMedCrossRef Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111–35.PubMedCrossRef
10.
Zurück zum Zitat van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.PubMed van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.PubMed
11.
Zurück zum Zitat Howard LM, Miller SD. Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease. Autoimmunity. 2004;37(5):411–8.PubMedCrossRef Howard LM, Miller SD. Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease. Autoimmunity. 2004;37(5):411–8.PubMedCrossRef
12.
Zurück zum Zitat Toubi E, Shoenfeld Y. The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity. 2004;37(6–7):457–64.PubMedCrossRef Toubi E, Shoenfeld Y. The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity. 2004;37(6–7):457–64.PubMedCrossRef
13.
Zurück zum Zitat Law CL, Grewal IS. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol. 2009;647:8–36.PubMedCrossRef Law CL, Grewal IS. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol. 2009;647:8–36.PubMedCrossRef
15.
Zurück zum Zitat Alaaeddine N, Hassan GS, Yacoub D, Mourad W. CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol. 2012;2012:490148.PubMedCentralPubMedCrossRef Alaaeddine N, Hassan GS, Yacoub D, Mourad W. CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol. 2012;2012:490148.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, et al. Expression of functional CD40 by vascular endothelial cells. J Exp Med. 1995;182(1):33–40.PubMedCrossRef Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, et al. Expression of functional CD40 by vascular endothelial cells. J Exp Med. 1995;182(1):33–40.PubMedCrossRef
17.
Zurück zum Zitat Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A. 1995;92(10):4342–6.PubMedCentralPubMedCrossRef Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A. 1995;92(10):4342–6.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D, et al. Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med. 1995;182(6):1857–64.PubMedCrossRef Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D, et al. Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med. 1995;182(6):1857–64.PubMedCrossRef
19.
Zurück zum Zitat Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001;89(12):1092–103.PubMedCrossRef Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001;89(12):1092–103.PubMedCrossRef
20.
Zurück zum Zitat Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001;58(1):4–43.PubMedCrossRef Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001;58(1):4–43.PubMedCrossRef
21.
Zurück zum Zitat Delmas Y, Viallard JF, Solanilla A, Villeneuve J, Pasquet JM, Belloc F, et al. Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. Kidney Int. 2005;68(5):2068–78.PubMedCrossRef Delmas Y, Viallard JF, Solanilla A, Villeneuve J, Pasquet JM, Belloc F, et al. Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. Kidney Int. 2005;68(5):2068–78.PubMedCrossRef
22.
Zurück zum Zitat Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, et al. CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med. 2002;8(3):247–52.PubMedCrossRef Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, et al. CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med. 2002;8(3):247–52.PubMedCrossRef
23.
Zurück zum Zitat Leveille C, Bouillon M, Guo W, Bolduc J, Sharif-Askari E, El-Fakhry Y, et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem. 2007;282(8):5143–51.PubMedCrossRef Leveille C, Bouillon M, Guo W, Bolduc J, Sharif-Askari E, El-Fakhry Y, et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem. 2007;282(8):5143–51.PubMedCrossRef
24.
Zurück zum Zitat Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115(12):1571–80.PubMedCrossRef Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115(12):1571–80.PubMedCrossRef
25.
Zurück zum Zitat Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol. 2009;30(4):165–72.PubMedCrossRef Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol. 2009;30(4):165–72.PubMedCrossRef
26.
Zurück zum Zitat Graf D, Muller S, Korthauer U, van Kooten C, Weise C, Kroczek RA. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 1995;25(6):1749–54.PubMedCrossRef Graf D, Muller S, Korthauer U, van Kooten C, Weise C, Kroczek RA. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 1995;25(6):1749–54.PubMedCrossRef
27.
Zurück zum Zitat Peitsch MC, Jongeneel CV. A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol. 1993;5(2):233–8.PubMedCrossRef Peitsch MC, Jongeneel CV. A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol. 1993;5(2):233–8.PubMedCrossRef
28.
Zurück zum Zitat Fanslow WC, Srinivasan S, Paxton R, Gibson MG, Spriggs MK, Armitage RJ. Structural characteristics of CD40 ligand that determine biological function. Semin Immunol. 1994;6(5):267–78.PubMedCrossRef Fanslow WC, Srinivasan S, Paxton R, Gibson MG, Spriggs MK, Armitage RJ. Structural characteristics of CD40 ligand that determine biological function. Semin Immunol. 1994;6(5):267–78.PubMedCrossRef
29.
Zurück zum Zitat Karpusas M, Hsu YM, Wang JH, Thompson J, Lederman S, Chess L, et al. 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure. 1995;3(10):1031–9.PubMedCrossRef Karpusas M, Hsu YM, Wang JH, Thompson J, Lederman S, Chess L, et al. 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure. 1995;3(10):1031–9.PubMedCrossRef
30.
Zurück zum Zitat Pietravalle F, Lecoanet-Henchoz S, Blasey H, Aubry JP, Elson G, Edgerton MD, et al. Human native soluble CD40L is a biologically active trimer, processed inside microsomes. J Biol Chem. 1996;271(11):5965–7.PubMedCrossRef Pietravalle F, Lecoanet-Henchoz S, Blasey H, Aubry JP, Elson G, Edgerton MD, et al. Human native soluble CD40L is a biologically active trimer, processed inside microsomes. J Biol Chem. 1996;271(11):5965–7.PubMedCrossRef
31.
Zurück zum Zitat Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. Adv Exp Med Biol. 2007;597:131–51.PubMedCrossRef Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. Adv Exp Med Biol. 2007;597:131–51.PubMedCrossRef
32.
Zurück zum Zitat Donners MM, Beckers L, Lievens D, Munnix I, Heemskerk J, Janssen BJ, et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood. 2008;111(9):4596–604.PubMedCrossRef Donners MM, Beckers L, Lievens D, Munnix I, Heemskerk J, Janssen BJ, et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood. 2008;111(9):4596–604.PubMedCrossRef
33.
Zurück zum Zitat Chatzigeorgiou A, Seijkens T, Zarzycka B, Engel D, Poggi M, van den Berg S, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.PubMedCentralPubMedCrossRef Chatzigeorgiou A, Seijkens T, Zarzycka B, Engel D, Poggi M, van den Berg S, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Horrillo A, Fontela T, Arias-Salgado EG, Llobat D, Porras G, Ayuso MS, et al. Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res. 2014;23(1):53–66.PubMedCrossRef Horrillo A, Fontela T, Arias-Salgado EG, Llobat D, Porras G, Ayuso MS, et al. Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res. 2014;23(1):53–66.PubMedCrossRef
35.
Zurück zum Zitat Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591–4.PubMedCrossRef Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591–4.PubMedCrossRef
36.
Zurück zum Zitat Kamykowski J, Carlton P, Sehgal S, Storrie B. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood. 2011;118(5):1370–3.PubMedCrossRef Kamykowski J, Carlton P, Sehgal S, Storrie B. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood. 2011;118(5):1370–3.PubMedCrossRef
37.
Zurück zum Zitat Charafeddine AH, Kim EJ, Maynard DM, Yi H, Weaver TA, Gunay-Aygun M, et al. Platelet-derived CD154: ultrastructural localization and clinical correlation in organ transplantation. Am J Transplant. 2012;12(11):3143–51.PubMedCentralPubMedCrossRef Charafeddine AH, Kim EJ, Maynard DM, Yi H, Weaver TA, Gunay-Aygun M, et al. Platelet-derived CD154: ultrastructural localization and clinical correlation in organ transplantation. Am J Transplant. 2012;12(11):3143–51.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Hermann A, Rauch BH, Braun M, Schror K, Weber AA. Platelet CD40 ligand (CD40L)–subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets. 2001;12(2):74–82.PubMedCrossRef Hermann A, Rauch BH, Braun M, Schror K, Weber AA. Platelet CD40 ligand (CD40L)–subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets. 2001;12(2):74–82.PubMedCrossRef
39.
Zurück zum Zitat Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379–91.PubMedPubMedCentralCrossRef Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379–91.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Reed GL, Fitzgerald ML, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood. 2000;96(10):3334–42.PubMed Reed GL, Fitzgerald ML, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood. 2000;96(10):3334–42.PubMed
42.
Zurück zum Zitat Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost. 2005;31(4):381–92.PubMedCrossRef Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost. 2005;31(4):381–92.PubMedCrossRef
43.
Zurück zum Zitat Ren Q, Ye S, Whiteheart SW. The platelet release reaction: just when you thought platelet secretion was simple. Curr Opin Hematol. 2008;15(5):537–41.PubMedCentralPubMedCrossRef Ren Q, Ye S, Whiteheart SW. The platelet release reaction: just when you thought platelet secretion was simple. Curr Opin Hematol. 2008;15(5):537–41.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Koseoglu S, Flaumenhaft R. Advances in platelet granule biology. Curr Opin Hematol. 2013;20(5):464–71.PubMedCrossRef Koseoglu S, Flaumenhaft R. Advances in platelet granule biology. Curr Opin Hematol. 2013;20(5):464–71.PubMedCrossRef
45.
Zurück zum Zitat Wijten P, van Holten T, Woo LL, Bleijerveld OB, Roest M, Heck AJ, et al. High precision platelet releasate definition by quantitative reversed protein profiling–brief report. Arterioscler Thromb Vasc Biol. 2013;33(7):1635–8.PubMedCrossRef Wijten P, van Holten T, Woo LL, Bleijerveld OB, Roest M, Heck AJ, et al. High precision platelet releasate definition by quantitative reversed protein profiling–brief report. Arterioscler Thromb Vasc Biol. 2013;33(7):1635–8.PubMedCrossRef
46.
Zurück zum Zitat Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol. 2013;165(2):204–16.PubMedCentralCrossRef Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol. 2013;165(2):204–16.PubMedCentralCrossRef
47.
Zurück zum Zitat Lindemann S, Gawaz M. The active platelet: translation and protein synthesis in an anucleate cell. Semin Thromb Hemost. 2007;33(2):144–50.PubMedCrossRef Lindemann S, Gawaz M. The active platelet: translation and protein synthesis in an anucleate cell. Semin Thromb Hemost. 2007;33(2):144–50.PubMedCrossRef
48.
Zurück zum Zitat Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost. 2009;7(2):241–6.PubMedCentralPubMedCrossRef Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost. 2009;7(2):241–6.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Aukrust P, Muller F, Ueland T, Berget T, Aaser E, Brunsvig A, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation. 1999;100(6):614–20.PubMedCrossRef Aukrust P, Muller F, Ueland T, Berget T, Aaser E, Brunsvig A, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation. 1999;100(6):614–20.PubMedCrossRef
50.
Zurück zum Zitat Henn V, Steinbach S, Buchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood. 2001;98(4):1047–54.PubMedCrossRef Henn V, Steinbach S, Buchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood. 2001;98(4):1047–54.PubMedCrossRef
51.
Zurück zum Zitat Jin Y, Nonoyama S, Morio T, Imai K, Ochs HD, Mizutani S. Characterization of soluble CD40 ligand released from human activated platelets. J Med Dent Sci. 2001;48(1):23–7.PubMed Jin Y, Nonoyama S, Morio T, Imai K, Ochs HD, Mizutani S. Characterization of soluble CD40 ligand released from human activated platelets. J Med Dent Sci. 2001;48(1):23–7.PubMed
52.
Zurück zum Zitat Nannizzi-Alaimo L, Rubenstein MH, Alves VL, Leong GY, Phillips DR, Gold HK. Cardiopulmonary bypass induces release of soluble CD40 ligand. Circulation. 2002;105(24):2849–54.PubMedCrossRef Nannizzi-Alaimo L, Rubenstein MH, Alves VL, Leong GY, Phillips DR, Gold HK. Cardiopulmonary bypass induces release of soluble CD40 ligand. Circulation. 2002;105(24):2849–54.PubMedCrossRef
53.
Zurück zum Zitat Otterdal K, Pedersen TM, Solum NO. Release of soluble CD40 ligand after platelet activation: studies on the solubilization phase. Thromb Res. 2004;114(3):167–77.PubMed Otterdal K, Pedersen TM, Solum NO. Release of soluble CD40 ligand after platelet activation: studies on the solubilization phase. Thromb Res. 2004;114(3):167–77.PubMed
54.
Zurück zum Zitat Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger 3rd AL, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004;43(12):2319–25.PubMedCrossRef Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger 3rd AL, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004;43(12):2319–25.PubMedCrossRef
55.
Zurück zum Zitat Menchen L, Marin-Jimenez I, Arias-Salgado EG, Fontela T, Hernandez-Sampelayo P, Rodriguez MC, et al. Matrix metalloproteinase 9 is involved in Crohn’s disease-associated platelet hyperactivation through the release of soluble CD40 ligand. Gut. 2009;58(7):920–8.PubMedCrossRef Menchen L, Marin-Jimenez I, Arias-Salgado EG, Fontela T, Hernandez-Sampelayo P, Rodriguez MC, et al. Matrix metalloproteinase 9 is involved in Crohn’s disease-associated platelet hyperactivation through the release of soluble CD40 ligand. Gut. 2009;58(7):920–8.PubMedCrossRef
56.
Zurück zum Zitat Reinboldt S, Wenzel F, Rauch BH, Hohlfeld T, Grandoch M, Fischer JW, et al. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets. Platelets. 2009;20(6):441–4.PubMedCrossRef Reinboldt S, Wenzel F, Rauch BH, Hohlfeld T, Grandoch M, Fischer JW, et al. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets. Platelets. 2009;20(6):441–4.PubMedCrossRef
57.
Zurück zum Zitat Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost. 2010;8(6):1364–71.PubMedCrossRef Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost. 2010;8(6):1364–71.PubMedCrossRef
58.
Zurück zum Zitat Yacoub D, Benslimane N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 Is Released from T-cells by a Disintegrin and Metalloproteinase Domain-containing Protein 10 (ADAM10) and ADAM17 in a CD40 Protein-dependent Manner. J Biol Chem. 2013;288(50):36083–93.PubMedCentralPubMedCrossRef Yacoub D, Benslimane N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 Is Released from T-cells by a Disintegrin and Metalloproteinase Domain-containing Protein 10 (ADAM10) and ADAM17 in a CD40 Protein-dependent Manner. J Biol Chem. 2013;288(50):36083–93.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation. 2003;107(8):1123–8.PubMedCrossRef Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation. 2003;107(8):1123–8.PubMedCrossRef
60.
Zurück zum Zitat Pignatelli P, Sanguigni V, Lenti L, Ferro D, Finocchi A, Rossi P, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation. 2004;110(10):1326–9.PubMedCrossRef Pignatelli P, Sanguigni V, Lenti L, Ferro D, Finocchi A, Rossi P, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation. 2004;110(10):1326–9.PubMedCrossRef
61.
Zurück zum Zitat Mazzei GJ, Edgerton MD, Losberger C, Lecoanet-Henchoz S, Graber P, Durandy A, et al. Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem. 1995;270(13):7025–8.PubMedCrossRef Mazzei GJ, Edgerton MD, Losberger C, Lecoanet-Henchoz S, Graber P, Durandy A, et al. Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem. 1995;270(13):7025–8.PubMedCrossRef
62.
Zurück zum Zitat Anand SX, Viles-Gonzalez JF, Badimon JJ, Cavusoglu E, Marmur JD. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost. 2003;90(3):377–84.PubMed Anand SX, Viles-Gonzalez JF, Badimon JJ, Cavusoglu E, Marmur JD. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost. 2003;90(3):377–84.PubMed
63.
Zurück zum Zitat Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008;111(10):5028–36.PubMedCentralPubMedCrossRef Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008;111(10):5028–36.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003;92(9):1041–8.PubMedCrossRef Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003;92(9):1041–8.PubMedCrossRef
65.
Zurück zum Zitat Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A. 2003;100(21):12367–71.PubMedCentralPubMedCrossRef Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A. 2003;100(21):12367–71.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol. 2002;13(4):293–302.PubMedCrossRef King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol. 2002;13(4):293–302.PubMedCrossRef
67.
Zurück zum Zitat Schulze H, Shivdasani RA. Mechanisms of thrombopoiesis. J Thromb Haemost. 2005;3(8):1717–24.PubMedCrossRef Schulze H, Shivdasani RA. Mechanisms of thrombopoiesis. J Thromb Haemost. 2005;3(8):1717–24.PubMedCrossRef
68.
Zurück zum Zitat Solanilla A, Pasquet JM, Viallard JF, Contin C, Grosset C, Dechanet-Merville J, et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood. 2005;105(1):215–8.PubMedCrossRef Solanilla A, Pasquet JM, Viallard JF, Contin C, Grosset C, Dechanet-Merville J, et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood. 2005;105(1):215–8.PubMedCrossRef
69.
Zurück zum Zitat Crist SA, Sprague DL, Ratliff TL. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood. 2008;111(7):3553–61.PubMedCentralPubMedCrossRef Crist SA, Sprague DL, Ratliff TL. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood. 2008;111(7):3553–61.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Crist SA, Elzey BD, Ahmann MT, Ratliff TL. Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem. 2013;288(47):33985–96.PubMedCentralPubMedCrossRef Crist SA, Elzey BD, Ahmann MT, Ratliff TL. Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem. 2013;288(47):33985–96.PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Weyrich AS, Dixon DA, Pabla R, Elstad MR, McIntyre TM, Prescott SM, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A. 1998;95(10):5556–61.PubMedCentralPubMedCrossRef Weyrich AS, Dixon DA, Pabla R, Elstad MR, McIntyre TM, Prescott SM, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A. 1998;95(10):5556–61.PubMedCentralPubMedCrossRef
72.
73.
74.
Zurück zum Zitat Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation. 2002;106(8):896–9.PubMedCrossRef Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation. 2002;106(8):896–9.PubMedCrossRef
75.
Zurück zum Zitat Viallard JF, Solanilla A, Gauthier B, Contin C, Dechanet J, Grosset C, et al. Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood. 2002;99(7):2612–4.PubMedCrossRef Viallard JF, Solanilla A, Gauthier B, Contin C, Dechanet J, Grosset C, et al. Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood. 2002;99(7):2612–4.PubMedCrossRef
76.
Zurück zum Zitat Nagasawa M, Zhu Y, Isoda T, Tomizawa D, Itoh S, Kajiwara M, et al. Analysis of serum soluble CD40 ligand (sCD40L) in the patients undergoing allogeneic stem cell transplantation: platelet is a major source of serum sCD40L. Eur J Haematol. 2005;74(1):54–60.PubMedCrossRef Nagasawa M, Zhu Y, Isoda T, Tomizawa D, Itoh S, Kajiwara M, et al. Analysis of serum soluble CD40 ligand (sCD40L) in the patients undergoing allogeneic stem cell transplantation: platelet is a major source of serum sCD40L. Eur J Haematol. 2005;74(1):54–60.PubMedCrossRef
77.
Zurück zum Zitat Feng X, Scheinberg P, Wu CO, Samsel L, Nunez O, Prince C, et al. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2011;96(4):602–6.PubMedCentralPubMedCrossRef Feng X, Scheinberg P, Wu CO, Samsel L, Nunez O, Prince C, et al. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2011;96(4):602–6.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Feng X, Scheinberg P, Samsel L, Rios O, Chen J, McCoy Jr JP, et al. Decreased plasma cytokines are associated with low platelet counts in aplastic anemia and immune thrombocytopenic purpura. J Thromb Haemost. 2012;10(8):1616–23.PubMedCentralPubMedCrossRef Feng X, Scheinberg P, Samsel L, Rios O, Chen J, McCoy Jr JP, et al. Decreased plasma cytokines are associated with low platelet counts in aplastic anemia and immune thrombocytopenic purpura. J Thromb Haemost. 2012;10(8):1616–23.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Fan Y, Ge Y, Zhu H, Wang Y, Yang B, Zhuang Y, et al. Characterization and application of two novel monoclonal antibodies against CD40L: epitope and functional studies on cell membrane CD40L and studies on the origin of soluble serum CD40L. Tissue Antigens. 2004;64(3):257–63.PubMedCrossRef Fan Y, Ge Y, Zhu H, Wang Y, Yang B, Zhuang Y, et al. Characterization and application of two novel monoclonal antibodies against CD40L: epitope and functional studies on cell membrane CD40L and studies on the origin of soluble serum CD40L. Tissue Antigens. 2004;64(3):257–63.PubMedCrossRef
80.
Zurück zum Zitat Mason PJ, Chakrabarti S, Albers AA, Rex S, Vitseva O, Varghese S, et al. Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. Am J Cardiol. 2005;96(10):1365–9.PubMedCrossRef Mason PJ, Chakrabarti S, Albers AA, Rex S, Vitseva O, Varghese S, et al. Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. Am J Cardiol. 2005;96(10):1365–9.PubMedCrossRef
81.
Zurück zum Zitat Cipollone F, Mezzetti A, Porreca E, Di Febbo C, Nutini M, Fazia M, et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation. 2002;106(4):399–402.PubMedCrossRef Cipollone F, Mezzetti A, Porreca E, Di Febbo C, Nutini M, Fazia M, et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation. 2002;106(4):399–402.PubMedCrossRef
82.
Zurück zum Zitat Riondino S, Martini F, La Farina F, Spila A, Guadagni F, Ferroni P. Increased plasma levels of soluble CD40 ligand correlate with platelet activation markers and underline the need for standardized pre-analytical conditions. Clin Biochem. 2010;43(7–8):666–70.PubMedCrossRef Riondino S, Martini F, La Farina F, Spila A, Guadagni F, Ferroni P. Increased plasma levels of soluble CD40 ligand correlate with platelet activation markers and underline the need for standardized pre-analytical conditions. Clin Biochem. 2010;43(7–8):666–70.PubMedCrossRef
83.
Zurück zum Zitat Burdess A, Michelsen AE, Brosstad F, Fox KA, Newby DE, Nimmo AF. Platelet activation in patients with peripheral vascular disease: reproducibility and comparability of platelet markers. Thromb Res. 2012;129(1):50–5.PubMedCrossRef Burdess A, Michelsen AE, Brosstad F, Fox KA, Newby DE, Nimmo AF. Platelet activation in patients with peripheral vascular disease: reproducibility and comparability of platelet markers. Thromb Res. 2012;129(1):50–5.PubMedCrossRef
84.
Zurück zum Zitat Ahn ER, Lander G, Jy W, Bidot CJ, Jimenez JJ, Horstman LL, et al. Differences of soluble CD40L in sera and plasma: implications on CD40L assay as a marker of thrombotic risk. Thromb Res. 2004;114(2):143–8.PubMedCrossRef Ahn ER, Lander G, Jy W, Bidot CJ, Jimenez JJ, Horstman LL, et al. Differences of soluble CD40L in sera and plasma: implications on CD40L assay as a marker of thrombotic risk. Thromb Res. 2004;114(2):143–8.PubMedCrossRef
85.
Zurück zum Zitat Thom J, Gilmore G, Yi Q, Hankey GJ, Eikelboom JW. Measurement of soluble P-selectin and soluble CD40 ligand in serum and plasma. J Thromb Haemost. 2004;2(11):2067–9.PubMedCrossRef Thom J, Gilmore G, Yi Q, Hankey GJ, Eikelboom JW. Measurement of soluble P-selectin and soluble CD40 ligand in serum and plasma. J Thromb Haemost. 2004;2(11):2067–9.PubMedCrossRef
86.
Zurück zum Zitat Varo N, Nuzzo R, Natal C, Libby P, Schonbeck U. Influence of pre-analytical and analytical factors on soluble CD40L measurements. Clin Sci (Lond). 2006;111(5):341–7.CrossRef Varo N, Nuzzo R, Natal C, Libby P, Schonbeck U. Influence of pre-analytical and analytical factors on soluble CD40L measurements. Clin Sci (Lond). 2006;111(5):341–7.CrossRef
87.
Zurück zum Zitat Weber M, Rabenau B, Stanisch M, Elsaesser A, Mitrovic V, Heeschen C, et al. Influence of sample type and storage conditions on soluble CD40 ligand assessment. Clin Chem. 2006;52(5):888–91.PubMedCrossRef Weber M, Rabenau B, Stanisch M, Elsaesser A, Mitrovic V, Heeschen C, et al. Influence of sample type and storage conditions on soluble CD40 ligand assessment. Clin Chem. 2006;52(5):888–91.PubMedCrossRef
88.
Zurück zum Zitat Weber M, Rabenau B, Stanisch M, Nef HM, Mollmann H, Elsasser A, et al. Influence of sample type on soluble CD40 ligand assessment in patients with acute coronary syndromes. Thromb Res. 2007;120(6):811–4.PubMedCrossRef Weber M, Rabenau B, Stanisch M, Nef HM, Mollmann H, Elsasser A, et al. Influence of sample type on soluble CD40 ligand assessment in patients with acute coronary syndromes. Thromb Res. 2007;120(6):811–4.PubMedCrossRef
89.
Zurück zum Zitat Ivandic BT, Spanuth E, Haase D, Lestin HG, Katus HA. Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin Chem. 2007;53(7):1231–4.PubMedCrossRef Ivandic BT, Spanuth E, Haase D, Lestin HG, Katus HA. Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin Chem. 2007;53(7):1231–4.PubMedCrossRef
90.
Zurück zum Zitat Mobarrez F, Sjovik C, Soop A, Hallstrom L, Frostell C, Pisetsky DS et al. CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets. 2014:1–5. [Epub ahead of print] Mobarrez F, Sjovik C, Soop A, Hallstrom L, Frostell C, Pisetsky DS et al. CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets. 2014:1–5. [Epub ahead of print]
91.
Zurück zum Zitat Schonbeck U, Gerdes N, Varo N, Reynolds RS, Horton DB, Bavendiek U, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation. 2002;106(23):2888–93.PubMedCrossRef Schonbeck U, Gerdes N, Varo N, Reynolds RS, Horton DB, Bavendiek U, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation. 2002;106(23):2888–93.PubMedCrossRef
92.
Zurück zum Zitat Semb AG, van Wissen S, Ueland T, Smilde T, Waehre T, Tripp MD, et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Coll Cardiol. 2003;41(2):275–9.PubMedCrossRef Semb AG, van Wissen S, Ueland T, Smilde T, Waehre T, Tripp MD, et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Coll Cardiol. 2003;41(2):275–9.PubMedCrossRef
93.
Zurück zum Zitat Li J, Zhao SP, Peng DQ, Xu ZM, Zhou HN. Early effect of pravastatin on serum soluble CD40L, matrix metalloproteinase-9, and C-reactive protein in patients with acute myocardial infarction. Clin Chem. 2004;50(9):1696–9.PubMedCrossRef Li J, Zhao SP, Peng DQ, Xu ZM, Zhou HN. Early effect of pravastatin on serum soluble CD40L, matrix metalloproteinase-9, and C-reactive protein in patients with acute myocardial infarction. Clin Chem. 2004;50(9):1696–9.PubMedCrossRef
94.
Zurück zum Zitat Tamura N, Yoshida M, Ichikawa N, Handa M, Ikeda Y, Tanabe T, et al. Shear-induced von Willebrand factor-mediated platelet surface translocation of the CD40 ligand. Thromb Res. 2002;108(5–6):311–5.PubMedCrossRef Tamura N, Yoshida M, Ichikawa N, Handa M, Ikeda Y, Tanabe T, et al. Shear-induced von Willebrand factor-mediated platelet surface translocation of the CD40 ligand. Thromb Res. 2002;108(5–6):311–5.PubMedCrossRef
95.
Zurück zum Zitat Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.PubMed Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.PubMed
96.
Zurück zum Zitat Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–9.PubMedCrossRef Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–9.PubMedCrossRef
97.
Zurück zum Zitat May AE, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (aIIbb3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation. 2002;106(16):2111–7.PubMedCrossRef May AE, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (aIIbb3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation. 2002;106(16):2111–7.PubMedCrossRef
98.
Zurück zum Zitat Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation. 2003;10(3–4):335–50.PubMedCrossRef Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation. 2003;10(3–4):335–50.PubMedCrossRef
99.
Zurück zum Zitat Dechanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol. 1997;159(11):5640–7.PubMed Dechanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol. 1997;159(11):5640–7.PubMed
101.
Zurück zum Zitat Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482–94.PubMedCrossRef Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482–94.PubMedCrossRef
102.
Zurück zum Zitat Projahn D, Koenen RR. Platelets: key players in vascular inflammation. J Leukoc Biol. 2012;92(6):1167–75.PubMedCrossRef Projahn D, Koenen RR. Platelets: key players in vascular inflammation. J Leukoc Biol. 2012;92(6):1167–75.PubMedCrossRef
103.
104.
Zurück zum Zitat Mach F, Schonbeck U, Libby P. CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis. 1998;137(Suppl):S89–95.PubMedCrossRef Mach F, Schonbeck U, Libby P. CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis. 1998;137(Suppl):S89–95.PubMedCrossRef
105.
Zurück zum Zitat Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394(6689):200–3.PubMedCrossRef Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394(6689):200–3.PubMedCrossRef
106.
Zurück zum Zitat Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol. 2005;25(2):103–21.PubMedCrossRef Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol. 2005;25(2):103–21.PubMedCrossRef
107.
Zurück zum Zitat Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54(8):669–77.PubMedCrossRef Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54(8):669–77.PubMedCrossRef
108.
Zurück zum Zitat Lievens D, Eijgelaar WJ, Biessen EA, Daemen MJ, Lutgens E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost. 2009;102(2):206–14.PubMed Lievens D, Eijgelaar WJ, Biessen EA, Daemen MJ, Lutgens E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost. 2009;102(2):206–14.PubMed
109.
Zurück zum Zitat Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood. 2010;116(20):4317–27.PubMedCentralPubMedCrossRef Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood. 2010;116(20):4317–27.PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol. 2005;33(1):73–84.PubMedCrossRef Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol. 2005;33(1):73–84.PubMedCrossRef
111.
Zurück zum Zitat Kiener PA, Moran-Davis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol. 1995;155(10):4917–25.PubMed Kiener PA, Moran-Davis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol. 1995;155(10):4917–25.PubMed
112.
Zurück zum Zitat Danese S, de la Motte C, Sturm A, Vogel JD, West GA, Strong SA, et al. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology. 2003;124(5):1249–64.PubMedCrossRef Danese S, de la Motte C, Sturm A, Vogel JD, West GA, Strong SA, et al. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology. 2003;124(5):1249–64.PubMedCrossRef
113.
Zurück zum Zitat Kornerup KN, Page CP. The role of platelets in the pathophysiology of asthma. Platelets. 2007;18(5):319–28.PubMedCrossRef Kornerup KN, Page CP. The role of platelets in the pathophysiology of asthma. Platelets. 2007;18(5):319–28.PubMedCrossRef
114.
Zurück zum Zitat Tabuchi A, Kuebler WM. Endothelium-platelet interactions in inflammatory lung disease. Vascul Pharmacol. 2008;49(4–6):141–50.PubMedCrossRef Tabuchi A, Kuebler WM. Endothelium-platelet interactions in inflammatory lung disease. Vascul Pharmacol. 2008;49(4–6):141–50.PubMedCrossRef
115.
Zurück zum Zitat Yoshida H, Granger DN. Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation. Inflamm Bowel Dis. 2009;15(8):1245–55.PubMedCentralPubMedCrossRef Yoshida H, Granger DN. Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation. Inflamm Bowel Dis. 2009;15(8):1245–55.PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Ripoche J. Blood platelets and inflammation: their relationship with liver and digestive diseases. Clin Res Hepatol Gastroenterol. 2011;35(5):353–7.PubMedCrossRef Ripoche J. Blood platelets and inflammation: their relationship with liver and digestive diseases. Clin Res Hepatol Gastroenterol. 2011;35(5):353–7.PubMedCrossRef
117.
Zurück zum Zitat Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol. 2012;8(9):534–42.PubMedCrossRef Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol. 2012;8(9):534–42.PubMedCrossRef
118.
Zurück zum Zitat Santilli F, Vazzana N, Liani R, Guagnano MT, Davi G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13(1):27–42.PubMedCrossRef Santilli F, Vazzana N, Liani R, Guagnano MT, Davi G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13(1):27–42.PubMedCrossRef
119.
Zurück zum Zitat Gasparyan AY, Ayvazyan L, Pretorius E, Kitas GD. Platelets in Rheumatic Diseases: Friend or Foe? Curr Pharm Des. 2014;20(4):552–66.PubMedCrossRef Gasparyan AY, Ayvazyan L, Pretorius E, Kitas GD. Platelets in Rheumatic Diseases: Friend or Foe? Curr Pharm Des. 2014;20(4):552–66.PubMedCrossRef
120.
Zurück zum Zitat Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thromb Haemost. 2013;110(5):888–93.PubMedCrossRef Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thromb Haemost. 2013;110(5):888–93.PubMedCrossRef
121.
Zurück zum Zitat Kato K, Santana-Sahagùn E, Rassenti LZ, Weisman MH, Tamura N, Kobayashi S, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest. 1999;104(7):947–55.PubMedCentralPubMedCrossRef Kato K, Santana-Sahagùn E, Rassenti LZ, Weisman MH, Tamura N, Kobayashi S, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest. 1999;104(7):947–55.PubMedCentralPubMedCrossRef
122.
Zurück zum Zitat Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004;34(6):392–401.PubMedCrossRef Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004;34(6):392–401.PubMedCrossRef
123.
Zurück zum Zitat Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost. 2005;94(3):488–92.PubMed Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost. 2005;94(3):488–92.PubMed
124.
Zurück zum Zitat Varon D, Shai E. Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med. 2009;8(43):237–41.PubMed Varon D, Shai E. Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med. 2009;8(43):237–41.PubMed
125.
Zurück zum Zitat Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–3.PubMedCentralPubMedCrossRef Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–3.PubMedCentralPubMedCrossRef
126.
Zurück zum Zitat Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010;8(11):2358–68.PubMedCrossRef Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010;8(11):2358–68.PubMedCrossRef
127.
Zurück zum Zitat Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423–41.CrossRef Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423–41.CrossRef
128.
Zurück zum Zitat Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev. 2014;28(4):155–66.PubMedCrossRef Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev. 2014;28(4):155–66.PubMedCrossRef
131.
Zurück zum Zitat Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.PubMedCrossRef Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.PubMedCrossRef
132.
Zurück zum Zitat Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.PubMedCrossRef Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.PubMedCrossRef
133.
Zurück zum Zitat Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedCrossRef Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedCrossRef
134.
Zurück zum Zitat Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105 Suppl 1:S13–33.PubMedCrossRef Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105 Suppl 1:S13–33.PubMedCrossRef
135.
Zurück zum Zitat Gawaz M, Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013;122(15):2550–4.PubMedCrossRef Gawaz M, Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013;122(15):2550–4.PubMedCrossRef
137.
Zurück zum Zitat Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000;96(13):4216–21.PubMed Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000;96(13):4216–21.PubMed
138.
Zurück zum Zitat Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res. 2004;63(2):226–35.PubMedCrossRef Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res. 2004;63(2):226–35.PubMedCrossRef
139.
Zurück zum Zitat Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835–42.PubMedCrossRef Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835–42.PubMedCrossRef
140.
Zurück zum Zitat Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.PubMedCrossRef Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.PubMedCrossRef
141.
Zurück zum Zitat Markiewski MM, DeAngelis RA, Lambris JD. Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol. 2006;43(1–2):45–56.PubMedCrossRef Markiewski MM, DeAngelis RA, Lambris JD. Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol. 2006;43(1–2):45–56.PubMedCrossRef
142.
Zurück zum Zitat Nocito A, Georgiev P, Dahm F, Jochum W, Bader M, Graf R, et al. Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology. 2007;45(2):369–76.PubMedCrossRef Nocito A, Georgiev P, Dahm F, Jochum W, Bader M, Graf R, et al. Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology. 2007;45(2):369–76.PubMedCrossRef
143.
Zurück zum Zitat Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, et al. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Ther. 2002;5(5 Pt 1):517–27.PubMedCrossRef Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, et al. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Ther. 2002;5(5 Pt 1):517–27.PubMedCrossRef
144.
Zurück zum Zitat Norazit A, Nguyen MN, Dickson CG, Tuxworth G, Goss B, Mackay-Sim A, et al. Vascular endothelial growth factor and platelet derived growth factor modulates the glial response to a cortical stab injury. Neuroscience. 2011;192:652–60.PubMedCrossRef Norazit A, Nguyen MN, Dickson CG, Tuxworth G, Goss B, Mackay-Sim A, et al. Vascular endothelial growth factor and platelet derived growth factor modulates the glial response to a cortical stab injury. Neuroscience. 2011;192:652–60.PubMedCrossRef
145.
Zurück zum Zitat Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004;124(3):376–84.PubMedCrossRef Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004;124(3):376–84.PubMedCrossRef
146.
Zurück zum Zitat Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67(1):30–8.PubMedCrossRef Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67(1):30–8.PubMedCrossRef
147.
Zurück zum Zitat Italiano Jr JE, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17(6):578–84.PubMedCentralPubMedCrossRef Italiano Jr JE, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17(6):578–84.PubMedCentralPubMedCrossRef
148.
Zurück zum Zitat Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation. 2010;122(5):495–506.PubMedCrossRef Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation. 2010;122(5):495–506.PubMedCrossRef
149.
Zurück zum Zitat Hayon Y, Shai E, Varon D, Leker RR. The role of platelets and their microparticles in rehabilitation of ischemic brain tissue. CNS Neurol Disord Drug Targets. 2012;11(7):921–5.PubMedCrossRef Hayon Y, Shai E, Varon D, Leker RR. The role of platelets and their microparticles in rehabilitation of ischemic brain tissue. CNS Neurol Disord Drug Targets. 2012;11(7):921–5.PubMedCrossRef
150.
Zurück zum Zitat Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91(1):4–15.PubMed Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91(1):4–15.PubMed
151.
Zurück zum Zitat Langer HF, Gawaz M. Platelets in regenerative medicine. Basic Res Cardiol. 2008;103(4):299–307.PubMedCrossRef Langer HF, Gawaz M. Platelets in regenerative medicine. Basic Res Cardiol. 2008;103(4):299–307.PubMedCrossRef
152.
Zurück zum Zitat Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.PubMed Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci. 2008;13:3532–48.PubMed
153.
Zurück zum Zitat Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev. 2013;27(2):77–89.PubMedCrossRef Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev. 2013;27(2):77–89.PubMedCrossRef
154.
Zurück zum Zitat Textor J. Platelet-Rich Plasma (PRP) as a Therapeutic Agent: Platelet Biology, Growth Factors and a Review of the Literature. In: Andrade Santana MH, Dias Belangero W, Malheiros Luzo AC, editors. Lana JFSD. Springer Berlin Heidelberg: Platelet-Rich Plasma. Lecture Notes in Bioengineering; 2014. p. 61–94. Textor J. Platelet-Rich Plasma (PRP) as a Therapeutic Agent: Platelet Biology, Growth Factors and a Review of the Literature. In: Andrade Santana MH, Dias Belangero W, Malheiros Luzo AC, editors. Lana JFSD. Springer Berlin Heidelberg: Platelet-Rich Plasma. Lecture Notes in Bioengineering; 2014. p. 61–94.
155.
Zurück zum Zitat Mach F, Schonbeck U, Fabunmi RP, Murphy C, Atkinson E, Bonnefoy JY, et al. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol. 1999;154(1):229–38.PubMedCentralPubMedCrossRef Mach F, Schonbeck U, Fabunmi RP, Murphy C, Atkinson E, Bonnefoy JY, et al. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol. 1999;154(1):229–38.PubMedCentralPubMedCrossRef
156.
Zurück zum Zitat Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000;96(12):3801–8.PubMed Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000;96(12):3801–8.PubMed
157.
Zurück zum Zitat Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G. CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem. 2003;278(20):18008–14.PubMedCrossRef Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G. CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem. 2003;278(20):18008–14.PubMedCrossRef
158.
Zurück zum Zitat Li G, Sanders JM, Bevard MH, Sun Z, Chumley JW, Galkina EV, et al. CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol. 2008;172(4):1141–52.PubMedCentralPubMedCrossRef Li G, Sanders JM, Bevard MH, Sun Z, Chumley JW, Galkina EV, et al. CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol. 2008;172(4):1141–52.PubMedCentralPubMedCrossRef
159.
Zurück zum Zitat Song Z, Jin R, Yu S, Nanda A, Granger DN, Li G. Crucial role of CD40 signaling in vascular wall cells in neointimal formation and vascular remodeling after vascular interventions. Arterioscler Thromb Vasc Biol. 2012;32(1):50–64.PubMedCentralPubMedCrossRef Song Z, Jin R, Yu S, Nanda A, Granger DN, Li G. Crucial role of CD40 signaling in vascular wall cells in neointimal formation and vascular remodeling after vascular interventions. Arterioscler Thromb Vasc Biol. 2012;32(1):50–64.PubMedCentralPubMedCrossRef
160.
Zurück zum Zitat Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation. 2002;106(8):981–6.PubMedCrossRef Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation. 2002;106(8):981–6.PubMedCrossRef
161.
Zurück zum Zitat Hristov M, Gumbel D, Lutgens E, Zernecke A, Weber C. Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation. 2010;121(2):315–24.PubMedCrossRef Hristov M, Gumbel D, Lutgens E, Zernecke A, Weber C. Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation. 2010;121(2):315–24.PubMedCrossRef
162.
Zurück zum Zitat Bou Khzam L, Boulahya R, Abou-Saleh H, Hachem A, Zaid Y, Merhi Y. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9. PLoS One. 2013;8(12):e84289.PubMedCentralPubMedCrossRef Bou Khzam L, Boulahya R, Abou-Saleh H, Hachem A, Zaid Y, Merhi Y. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9. PLoS One. 2013;8(12):e84289.PubMedCentralPubMedCrossRef
163.
Zurück zum Zitat Peguet-Navarro J, Dalbiez-Gauthier C, Moulon C, Berthier O, Reano A, Gaucherand M, et al. CD40 ligation of human keratinocytes inhibits their proliferation and induces their differentiation. J Immunol. 1997;158(1):144–52.PubMed Peguet-Navarro J, Dalbiez-Gauthier C, Moulon C, Berthier O, Reano A, Gaucherand M, et al. CD40 ligation of human keratinocytes inhibits their proliferation and induces their differentiation. J Immunol. 1997;158(1):144–52.PubMed
164.
Zurück zum Zitat Lopez-Granados E, Temmerman ST, Wu L, Reynolds JC, Follmann D, Liu S, et al. Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc Natl Acad Sci U S A. 2007;104(12):5056–61.PubMedCentralPubMedCrossRef Lopez-Granados E, Temmerman ST, Wu L, Reynolds JC, Follmann D, Liu S, et al. Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc Natl Acad Sci U S A. 2007;104(12):5056–61.PubMedCentralPubMedCrossRef
165.
Zurück zum Zitat Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian W, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–48.PubMedCentralPubMedCrossRef Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian W, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–48.PubMedCentralPubMedCrossRef
166.
Zurück zum Zitat Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF. CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology. 2003;144(5):1761–9.PubMedCrossRef Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF. CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology. 2003;144(5):1761–9.PubMedCrossRef
167.
Zurück zum Zitat Bozza FA, Shah AM, Weyrich AS, Zimmerman GA. Amicus or adversary: platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol. 2009;40(2):123–34.PubMedCentralPubMedCrossRef Bozza FA, Shah AM, Weyrich AS, Zimmerman GA. Amicus or adversary: platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol. 2009;40(2):123–34.PubMedCentralPubMedCrossRef
168.
Zurück zum Zitat Hu H, Batteux F, Chereau C, Kavian N, Marut W, Gobeaux C, et al. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol. 2011;225(2):265–75.PubMedCrossRef Hu H, Batteux F, Chereau C, Kavian N, Marut W, Gobeaux C, et al. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol. 2011;225(2):265–75.PubMedCrossRef
169.
Zurück zum Zitat Dixon JT, Gozal E, Roberts AM. Platelet-mediated vascular dysfunction during acute lung injury. Arch Physiol Biochem. 2012;118(2):72–82.PubMedCrossRef Dixon JT, Gozal E, Roberts AM. Platelet-mediated vascular dysfunction during acute lung injury. Arch Physiol Biochem. 2012;118(2):72–82.PubMedCrossRef
170.
Zurück zum Zitat Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005;111(13):1690–6.PubMedCrossRef Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005;111(13):1690–6.PubMedCrossRef
171.
Zurück zum Zitat Ke B, Shen XD, Gao F, Tsuchihashi S, Farmer DG, Briscoe D, et al. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation. 2005;79(9):1078–83.PubMedPubMedCentralCrossRef Ke B, Shen XD, Gao F, Tsuchihashi S, Farmer DG, Briscoe D, et al. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation. 2005;79(9):1078–83.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Lapchak PH, Ioannou A, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One. 2012;7(2):e32260.PubMedCentralPubMedCrossRef Lapchak PH, Ioannou A, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One. 2012;7(2):e32260.PubMedCentralPubMedCrossRef
173.
Zurück zum Zitat Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol. 2004;25(9):489–95.PubMedCrossRef Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol. 2004;25(9):489–95.PubMedCrossRef
174.
Zurück zum Zitat Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006;4(6):445–57.PubMedCrossRef Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006;4(6):445–57.PubMedCrossRef
175.
Zurück zum Zitat Flaujac C, Boukour S, Cramer-Borde E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci. 2010;67(4):545–56.PubMedCrossRef Flaujac C, Boukour S, Cramer-Borde E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci. 2010;67(4):545–56.PubMedCrossRef
176.
Zurück zum Zitat Speth C, Loffler J, Krappmann S, Lass-Florl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol. 2013;8(11):1431–51.PubMedCrossRef Speth C, Loffler J, Krappmann S, Lass-Florl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol. 2013;8(11):1431–51.PubMedCrossRef
177.
Zurück zum Zitat Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost. 2014;12(11):1764–75.PubMedCrossRef Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost. 2014;12(11):1764–75.PubMedCrossRef
178.
Zurück zum Zitat Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.PubMedCrossRef Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.PubMedCrossRef
179.
Zurück zum Zitat Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res. 2002;22(9):913–22.PubMedCrossRef Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res. 2002;22(9):913–22.PubMedCrossRef
180.
Zurück zum Zitat Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004;113(6):379–85.PubMedCrossRef Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004;113(6):379–85.PubMedCrossRef
181.
Zurück zum Zitat Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol. 2008;141(1):84–91.PubMedCrossRef Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol. 2008;141(1):84–91.PubMedCrossRef
182.
Zurück zum Zitat Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci. 2010;67(4):499–511.PubMedCrossRef Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci. 2010;67(4):499–511.PubMedCrossRef
183.
Zurück zum Zitat Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30.PubMedCentralPubMedCrossRef Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30.PubMedCentralPubMedCrossRef
184.
Zurück zum Zitat Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–61.PubMedCrossRef Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–61.PubMedCrossRef
185.
Zurück zum Zitat Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273(5272):252–5.PubMedCrossRef Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273(5272):252–5.PubMedCrossRef
186.
Zurück zum Zitat Diacovo TG, Catalina MD, Siegelman MH, von Andrian UH. Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med. 1998;187(2):197–204.PubMedCentralPubMedCrossRef Diacovo TG, Catalina MD, Siegelman MH, von Andrian UH. Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med. 1998;187(2):197–204.PubMedCentralPubMedCrossRef
187.
Zurück zum Zitat Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238(1):1–9.PubMedCrossRef Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005;238(1):1–9.PubMedCrossRef
189.
Zurück zum Zitat McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008;8(2):99–117.PubMedCrossRef McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008;8(2):99–117.PubMedCrossRef
190.
Zurück zum Zitat Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759–66.PubMedCrossRef Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759–66.PubMedCrossRef
191.
Zurück zum Zitat Sowa JM, Crist SA, Ratliff TL, Elzey BD. Platelet influence on T- and B-cell responses. Arch Immunol Ther Exp (Warsz). 2009;57(4):235–41.CrossRef Sowa JM, Crist SA, Ratliff TL, Elzey BD. Platelet influence on T- and B-cell responses. Arch Immunol Ther Exp (Warsz). 2009;57(4):235–41.CrossRef
193.
Zurück zum Zitat Li C, Li J, Li Y, Lang S, Yougbare I, Zhu G, et al. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv Hematol. 2012;2012:384685.PubMedCentralPubMedCrossRef Li C, Li J, Li Y, Lang S, Yougbare I, Zhu G, et al. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv Hematol. 2012;2012:384685.PubMedCentralPubMedCrossRef
194.
Zurück zum Zitat Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F. Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology? Crit Care. 2013;17(4):236.PubMedCentralPubMedCrossRef Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F. Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology? Crit Care. 2013;17(4):236.PubMedCentralPubMedCrossRef
195.
Zurück zum Zitat Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, et al. Platelets present antigen in the context of MHC class I. J Immunol. 2012;189(2):916–23.PubMedCentralPubMedCrossRef Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, et al. Platelets present antigen in the context of MHC class I. J Immunol. 2012;189(2):916–23.PubMedCentralPubMedCrossRef
196.
Zurück zum Zitat Kao KJ, Cook DJ, Scornik JC. Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood. 1986;68(3):627–32.PubMed Kao KJ, Cook DJ, Scornik JC. Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood. 1986;68(3):627–32.PubMed
197.
Zurück zum Zitat Yukawa M, Sakon M, Kambayashi J, Shiba E, Kawasaki T, Ariyoshi H, et al. Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun. 1991;178(1):256–62.PubMedCrossRef Yukawa M, Sakon M, Kambayashi J, Shiba E, Kawasaki T, Ariyoshi H, et al. Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun. 1991;178(1):256–62.PubMedCrossRef
198.
Zurück zum Zitat Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM. Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol. 2014;34(1):160–8.PubMedCentralPubMedCrossRef Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM. Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol. 2014;34(1):160–8.PubMedCentralPubMedCrossRef
199.
Zurück zum Zitat Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P. Characterization of the platelet granule proteome: Evidence of the presence of MHC1 in alpha-granules. J Proteomics. 2014;101:130–40.PubMedCrossRef Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P. Characterization of the platelet granule proteome: Evidence of the presence of MHC1 in alpha-granules. J Proteomics. 2014;101:130–40.PubMedCrossRef
200.
Zurück zum Zitat Jin R, Yu S, Song Z, Zhu X, Wang C, Yan J, et al. Soluble CD40 ligand stimulates CD40-dependent activation of the beta2 integrin Mac-1 and protein kinase C zeda (PKCzeta) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One. 2013;8(6):e64631.PubMedCentralPubMedCrossRef Jin R, Yu S, Song Z, Zhu X, Wang C, Yan J, et al. Soluble CD40 ligand stimulates CD40-dependent activation of the beta2 integrin Mac-1 and protein kinase C zeda (PKCzeta) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One. 2013;8(6):e64631.PubMedCentralPubMedCrossRef
201.
Zurück zum Zitat Suttles J, Stout RD. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin Immunol. 2009;21(5):257–64.PubMedCrossRef Suttles J, Stout RD. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin Immunol. 2009;21(5):257–64.PubMedCrossRef
202.
203.
Zurück zum Zitat Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One. 2011;6(6):e20651.PubMedCentralPubMedCrossRef Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One. 2011;6(6):e20651.PubMedCentralPubMedCrossRef
204.
Zurück zum Zitat Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P, et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol. 2011;12(5):416–24.PubMedCrossRef Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P, et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol. 2011;12(5):416–24.PubMedCrossRef
205.
Zurück zum Zitat von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100(1):27–40.CrossRef von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100(1):27–40.CrossRef
206.
Zurück zum Zitat Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity. 2003;19(1):9–19.PubMedCrossRef Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity. 2003;19(1):9–19.PubMedCrossRef
207.
Zurück zum Zitat Kaneider NC, Kaser A, Tilg H, Ricevuti G, Wiedermann CJ. CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated platelets. Int J Immunopathol Pharmacol. 2003;16(3):225–31.PubMed Kaneider NC, Kaser A, Tilg H, Ricevuti G, Wiedermann CJ. CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated platelets. Int J Immunopathol Pharmacol. 2003;16(3):225–31.PubMed
208.
Zurück zum Zitat Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol. 2004;32(2):135–9.PubMedCrossRef Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol. 2004;32(2):135–9.PubMedCrossRef
209.
Zurück zum Zitat Martinson J, Bae J, Klingemann HG, Tam Y. Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy. 2004;6(5):487–97.PubMedCrossRef Martinson J, Bae J, Klingemann HG, Tam Y. Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy. 2004;6(5):487–97.PubMedCrossRef
210.
Zurück zum Zitat Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol. 2005;78(1):80–4.PubMedCrossRef Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol. 2005;78(1):80–4.PubMedCrossRef
211.
Zurück zum Zitat Solpov A, Shenkman B, Vitkovsky Y, Brill G, Koltakov A, Farzam N, et al. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb Haemost. 2006;95(5):815–21.PubMed Solpov A, Shenkman B, Vitkovsky Y, Brill G, Koltakov A, Farzam N, et al. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb Haemost. 2006;95(5):815–21.PubMed
212.
Zurück zum Zitat Xu H, Zhang X, Mannon RB, Kirk AD. Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest. 2006;116(3):769–74.PubMedCentralPubMedCrossRef Xu H, Zhang X, Mannon RB, Kirk AD. Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest. 2006;116(3):769–74.PubMedCentralPubMedCrossRef
213.
Zurück zum Zitat Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogne M, Richard Y, et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007;35(9):1376–87.PubMedCrossRef Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogne M, Richard Y, et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007;35(9):1376–87.PubMedCrossRef
214.
Zurück zum Zitat Iannacone M, Sitia G, Isogawa M, Whitmire JK, Marchese P, Chisari FV, et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A. 2008;105(2):629–34.PubMedCentralPubMedCrossRef Iannacone M, Sitia G, Isogawa M, Whitmire JK, Marchese P, Chisari FV, et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A. 2008;105(2):629–34.PubMedCentralPubMedCrossRef
215.
Zurück zum Zitat Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B, et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood. 2008;111(7):3684–91.PubMedCentralPubMedCrossRef Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B, et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood. 2008;111(7):3684–91.PubMedCentralPubMedCrossRef
216.
Zurück zum Zitat Nomura S, Fujita S, Nakanishi T, Yokoi T, Shimamoto K, Miyamoto R, et al. Platelet-derived microparticles cause CD154-dependent activation of dendritic cells. Platelets. 2012;23(1):81–2.PubMedCrossRef Nomura S, Fujita S, Nakanishi T, Yokoi T, Shimamoto K, Miyamoto R, et al. Platelet-derived microparticles cause CD154-dependent activation of dendritic cells. Platelets. 2012;23(1):81–2.PubMedCrossRef
218.
Zurück zum Zitat Duffau P, Seneschal J, Nicco C, Richez C, Lazaro E, Douchet I, et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med. 2010;2(47):47ra63.PubMedCrossRef Duffau P, Seneschal J, Nicco C, Richez C, Lazaro E, Douchet I, et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med. 2010;2(47):47ra63.PubMedCrossRef
221.
Zurück zum Zitat Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012;119(13):2991–3002.PubMedCrossRef Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012;119(13):2991–3002.PubMedCrossRef
223.
Zurück zum Zitat Libregts SF, Nolte MA. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Exp Cell Res. 2014;329(2):239–47.PubMedCrossRef Libregts SF, Nolte MA. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Exp Cell Res. 2014;329(2):239–47.PubMedCrossRef
224.
225.
Zurück zum Zitat Foss B, Bruserud O, Hervig T. Platelet-released supernatants enhance hematopoietic stem cell proliferation in vitro. Platelets. 2008;19(2):155–9.PubMedCrossRef Foss B, Bruserud O, Hervig T. Platelet-released supernatants enhance hematopoietic stem cell proliferation in vitro. Platelets. 2008;19(2):155–9.PubMedCrossRef
226.
Zurück zum Zitat de Boer HC, van Oeveren-Rietdijk AM, Rotmans JI, Dekkers OM, Rabelink TJ, van Zonneveld AJ. Activated platelets correlate with mobilization of naive CD34(+) cells and generation of CD34(+) /KDR(+) cells in the circulation. A meta-regression analysis. J Thromb Haemost. 2013;11(8):1583–92.PubMedCrossRef de Boer HC, van Oeveren-Rietdijk AM, Rotmans JI, Dekkers OM, Rabelink TJ, van Zonneveld AJ. Activated platelets correlate with mobilization of naive CD34(+) cells and generation of CD34(+) /KDR(+) cells in the circulation. A meta-regression analysis. J Thromb Haemost. 2013;11(8):1583–92.PubMedCrossRef
227.
Zurück zum Zitat Funakoshi S, Taub DD, Anver MR, Raziuddin A, Asai O, Reddy V, et al. Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest. 1997;99(3):484–91.PubMedCentralPubMedCrossRef Funakoshi S, Taub DD, Anver MR, Raziuddin A, Asai O, Reddy V, et al. Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest. 1997;99(3):484–91.PubMedCentralPubMedCrossRef
228.
Zurück zum Zitat Larson AW, LeBien TW. Cross-linking CD40 on human B cell precursors inhibits or enhances growth depending on the stage of development and the IL costimulus. J Immunol. 1994;153(2):584–94.PubMed Larson AW, LeBien TW. Cross-linking CD40 on human B cell precursors inhibits or enhances growth depending on the stage of development and the IL costimulus. J Immunol. 1994;153(2):584–94.PubMed
229.
Zurück zum Zitat Carlring J, Altaher HM, Clark S, Chen X, Latimer SL, Jenner T, et al. CD154-CD40 interactions in the control of murine B cell hematopoiesis. J Leukoc Biol. 2011;89(5):697–706.PubMedCentralPubMedCrossRef Carlring J, Altaher HM, Clark S, Chen X, Latimer SL, Jenner T, et al. CD154-CD40 interactions in the control of murine B cell hematopoiesis. J Leukoc Biol. 2011;89(5):697–706.PubMedCentralPubMedCrossRef
230.
Zurück zum Zitat Seijkens T, Engel D, Tjwa M, Lutgens E. The role of CD154 in haematopoietic development. Thromb Haemost. 2010;104(4):693–701.PubMedCrossRef Seijkens T, Engel D, Tjwa M, Lutgens E. The role of CD154 in haematopoietic development. Thromb Haemost. 2010;104(4):693–701.PubMedCrossRef
231.
Zurück zum Zitat Solanilla A, Dechanet J, El Andaloussi A, Dupouy M, Godard F, Chabrol J, et al. CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells. Blood. 2000;95(12):3758–64.PubMed Solanilla A, Dechanet J, El Andaloussi A, Dupouy M, Godard F, Chabrol J, et al. CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells. Blood. 2000;95(12):3758–64.PubMed
232.
Zurück zum Zitat Mavroudi I, Papadaki V, Pyrovolaki K, Katonis P, Eliopoulos AG, Papadaki HA. The CD40/CD40 ligand interactions exert pleiotropic effects on bone marrow granulopoiesis. J Leukoc Biol. 2011;89(5):771–83.PubMedCrossRef Mavroudi I, Papadaki V, Pyrovolaki K, Katonis P, Eliopoulos AG, Papadaki HA. The CD40/CD40 ligand interactions exert pleiotropic effects on bone marrow granulopoiesis. J Leukoc Biol. 2011;89(5):771–83.PubMedCrossRef
233.
Zurück zum Zitat Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost. 1992;18(4):392–415.PubMedCrossRef Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost. 1992;18(4):392–415.PubMedCrossRef
234.
Zurück zum Zitat Honn KV, Tang DG, Crissman JD. Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Rev. 1992;11(3–4):325–51.PubMedCrossRef Honn KV, Tang DG, Crissman JD. Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Rev. 1992;11(3–4):325–51.PubMedCrossRef
235.
Zurück zum Zitat Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.PubMedCrossRef Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.PubMedCrossRef
236.
Zurück zum Zitat Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–62.PubMedCrossRef Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–62.PubMedCrossRef
238.
Zurück zum Zitat Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.PubMedCrossRef Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.PubMedCrossRef
239.
Zurück zum Zitat Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med. 2013;24(5):393–400.PubMedCrossRef Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med. 2013;24(5):393–400.PubMedCrossRef
240.
Zurück zum Zitat Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 2014;33(1):231–69.PubMedCentralPubMedCrossRef Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 2014;33(1):231–69.PubMedCentralPubMedCrossRef
241.
Zurück zum Zitat Pinedo HM, Verheul HM, D’Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet. 1998;352(9142):1775–7.PubMedCrossRef Pinedo HM, Verheul HM, D’Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet. 1998;352(9142):1775–7.PubMedCrossRef
242.
Zurück zum Zitat Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.PubMed Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.PubMed
243.
244.
Zurück zum Zitat Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRef Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRef
245.
246.
Zurück zum Zitat Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988;81(4):1012–9.PubMedCentralPubMedCrossRef Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988;81(4):1012–9.PubMedCentralPubMedCrossRef
247.
Zurück zum Zitat Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352–7.PubMedCentralPubMedCrossRef Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352–7.PubMedCentralPubMedCrossRef
248.
249.
Zurück zum Zitat Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.PubMedCentralPubMedCrossRef Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.PubMedCentralPubMedCrossRef
250.
Zurück zum Zitat Coupland LA, Chong BH, Parish CR. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012;72(18):4662–71.PubMedCrossRef Coupland LA, Chong BH, Parish CR. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012;72(18):4662–71.PubMedCrossRef
251.
Zurück zum Zitat Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7.PubMedCrossRef Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7.PubMedCrossRef
252.
Zurück zum Zitat Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60.PubMedCrossRef Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60.PubMedCrossRef
253.
Zurück zum Zitat Varon D, Hayon Y, Dashevsky O, Shai E. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res. 2012;130 Suppl 1:S98–9.PubMedCrossRef Varon D, Hayon Y, Dashevsky O, Shai E. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res. 2012;130 Suppl 1:S98–9.PubMedCrossRef
254.
Zurück zum Zitat Tong AW, Stone MJ. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 2003;10(1):1–13.PubMedCrossRef Tong AW, Stone MJ. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 2003;10(1):1–13.PubMedCrossRef
255.
Zurück zum Zitat Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007;13(4):1083–8.PubMedCrossRef Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007;13(4):1083–8.PubMedCrossRef
256.
Zurück zum Zitat Loskog AS, Eliopoulos AG. The Janus faces of CD40 in cancer. Semin Immunol. 2009;21(5):301–7.PubMedCrossRef Loskog AS, Eliopoulos AG. The Janus faces of CD40 in cancer. Semin Immunol. 2009;21(5):301–7.PubMedCrossRef
257.
Zurück zum Zitat Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedCentralPubMedCrossRef Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedCentralPubMedCrossRef
258.
259.
Zurück zum Zitat Villeneuve J, Lepreux S, Mulot A, Berard AM, Higa-Nishiyama A, Costet P, et al. A protective role for CD154 in hepatic steatosis in mice. Hepatology. 2010;52(6):1968–79.PubMedCrossRef Villeneuve J, Lepreux S, Mulot A, Berard AM, Higa-Nishiyama A, Costet P, et al. A protective role for CD154 in hepatic steatosis in mice. Hepatology. 2010;52(6):1968–79.PubMedCrossRef
260.
Zurück zum Zitat Poggi M, Engel D, Christ A, Beckers L, Wijnands E, Boon L, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–60.PubMedCrossRef Poggi M, Engel D, Christ A, Beckers L, Wijnands E, Boon L, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–60.PubMedCrossRef
261.
Zurück zum Zitat Wolf D, Jehle F, Ortiz Rodriguez A, Dufner B, Hoppe N, Colberg C, et al. CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PLoS One. 2012;7(3):e33026.PubMedCentralPubMedCrossRef Wolf D, Jehle F, Ortiz Rodriguez A, Dufner B, Hoppe N, Colberg C, et al. CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PLoS One. 2012;7(3):e33026.PubMedCentralPubMedCrossRef
262.
Zurück zum Zitat Guo CA, Kogan S, Amano SU, Wang M, Dagdeviren S, Friedline RH, et al. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab. 2013;304(9):E951–63.PubMedCentralPubMedCrossRef Guo CA, Kogan S, Amano SU, Wang M, Dagdeviren S, Friedline RH, et al. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab. 2013;304(9):E951–63.PubMedCentralPubMedCrossRef
263.
Zurück zum Zitat Wolf D, Jehle F, Michel NA, Bukosza EN, Rivera J, Chen YC, et al. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.PubMedCrossRef Wolf D, Jehle F, Michel NA, Bukosza EN, Rivera J, Chen YC, et al. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.PubMedCrossRef
264.
Zurück zum Zitat Franchini M, Mannucci PM. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood. 2011;118(9):2405–12.PubMedCrossRef Franchini M, Mannucci PM. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood. 2011;118(9):2405–12.PubMedCrossRef
Metadaten
Titel
New frontiers for platelet CD154
verfasst von
Antoine Dewitte
Annabelle Tanga
Julien Villeneuve
Sébastien Lepreux
Alexandre Ouattara
Alexis Desmoulière
Christian Combe
Jean Ripoche
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Experimental Hematology & Oncology / Ausgabe 1/2015
Elektronische ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-015-0001-6

Weitere Artikel der Ausgabe 1/2015

Experimental Hematology & Oncology 1/2015 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.