Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2017

Open Access 01.12.2017 | Research

Associating liver partition and portal vein ligation for staged hepatectomy versus conventional two-stage hepatectomy: a systematic review and meta-analysis

verfasst von: Zheng Zhou, Mingxing Xu, Nan Lin, Chuzhi Pan, Boxuan Zhou, Yuesi Zhong, Ruiyun Xu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2017

Abstract

Background

It is generally accepted that an insufficient future liver remnant is a major limitation of large-scale hepatectomy for patients with primary hepatocellular carcinoma. Conventional two-stage hepatectomy (TSH) is commonly considered to accelerate future liver regeneration despite its low regeneration rate. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), which is characterized by a rapid regeneration, has brought new opportunities.

Methods

Relevant studies were identified by searching the selected databases up to September 2017. Then, a meta-analysis of regeneration efficiency, complication rate, R0 resection ratio, and short-term outcomes was performed.

Results

Ten studies, comprising 719 patients, were included. The overall analysis showed that ALPPS was associated with a larger hyperplastic volume and a shorter time interval (P < 0.00001) than TSH. ALPPS also exhibited a higher completion rate for second-stage operations (odds ratio, OR 9.50; P < 0.0001) and a slightly higher rate of R0 resection (OR 1.90; P = 0.11). Interestingly, there was no significant difference in 90-day mortality between the two treatments (OR 1.44; P = 0.35).

Conclusions

These results indicate that compared with TSH, ALPPS possesses a stronger regenerative ability and better facilitates second-stage operations. However, the safety, patient outcomes, and patient selection for ALPPS require further study.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12957-017-1295-0) contains supplementary material, which is available to authorized users.
Abkürzungen
ALPPS
Associating liver partition and portal vein ligation for staged hepatectomy
CI
Confidence interval
FLR
Future liver remnant
KGR
Kinetic growth rate
NOS
Newcastle-Ottawa Scale
OR
Odds ratio
PLF
Postoperative liver failure
PVE
Portal vein embolization
PVL
Portal vein ligation
PVO
Portal vein occlusion
PVP
Portal vein pressure
RALPPS
Radiofrequency-ALPPS
TSH
Two-stage hepatectomy
WMD
Weighted mean difference

Background

Multiple and large liver cancers remain a major challenge in liver surgery, although hepatectomy has become the most effective treatment [1]. A very common reason is the limited future liver remnant (FLR), one of the determining factors leading to postoperative liver failure (PLF), which restricts the application of this method. Commonly, a volume of over 20% FLR must remain to avoid PLF in a normal liver [2]. Conventional two-stage hepatectomy (TSH), including portal vein embolization (PVE) or portal vein ligation (PVL) accompanied by subsequent hepatectomy, represents one solution to this dilemma [3]. Regrettably, the shortcomings of a long time interval and low regeneration efficiency seriously limit its application [4]. In 2012, a new surgical approach named “associating liver partition and portal vein ligation for staged hepatectomy (ALPPS)”, characterized by great liver regeneration efficiency, was proposed by Schnitzbauer et al. [5]. However, standard methods for patient selection and the long-term outcomes of this new approach remain controversial.
Several systematic reviews have examined the advantages and disadvantages of ALPPS, especially the ability to promote an increased FLR. However, this method continues to provoke heated debate because of its high mortality and unclear feasibility compared with other technologies, such as conventional TSH. Moreover, patient outcomes of ALPPS also remain uncertain [68]. In the current analysis, we systematically searched for published studies comparing ALPPS and TSH to evaluate the liver regeneration efficiency, safety, and complication rates of these two methods.

Methods

The prospective agreement on study objectives, literature search methods, inclusion and exclusion criteria, outcome measurements, and statistical analysis methods were selected according to the Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) (Additional file 1: Appendix S1) and Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines (Additional file 2: Table S1).
There is currently no agreement on the definition of TSH. For the purpose of statistical analysis, the TSH group included patients who received PVE, PVL, or both.

Search strategy and selection criteria

A search of the PubMed, Embase, and Cochrane Library databases was performed to identify all studies comparing ALPPS and TSH. The following terms were searched: “liver partition,” “liver transection,” “portal vein occlusion,” “PVO,” “portal vein embolization,” “PVE,” “portal vein ligation,” “PVL,” “associating liver partition and portal vein ligation for staged hepatectomy,”, “ALPPS,” “staged hepatectomy,” and “two-stage hepatectomy.” The publication time was from January 1, 2009, to September 30, 2017, and the language was restricted to English.
All comparative studies comparing ALPPS with TSH in primary or secondary liver tumor patients who received surgery for staged hepatectomy were included. These studies included at least one quantitative outcome of interest, such as regeneration efficiency, time interval of the two stages, completion rate for second-stage operations, tumor deterioration, insufficient regeneration, R0 resection ratio, liver failure, bile leak, 90-day mortality, and 1-year disease-free survival. The excluded studies were those with irrelevant topics, case reports, non-comparative studies, review articles, letters, incomplete multiple published reports, and conference abstracts.

Data extraction and outcomes of interest

Two authors independently extracted and summarized the following data: patient characteristics, research designs, inclusion and exclusion criteria, and reported outcomes. Any disagreements were jointly resolved by the authors.

Quality assessment and statistical analysis

The studies ultimately included were classified according to the “2011 Levels of Evidence for Common Harms (Treatment Harms)” (Centre for Evidence Based Medicine, Oxford, UK). These levels of evidence can be described as follows: systematic reviews of randomized trials, systematic reviews of nested case-control studies and n-of-1 trials (level 1); individual randomized trials or (exceptionally) observational studies with a dramatic effect (level 2); non-randomized controlled cohort/follow-up studies, provided there are sufficient numbers to rule out a common harm (level 3); case-series, case-control studies, or historically controlled studies (level 4); and mechanism-based reasoning (level 5) [9].
The weighted mean difference (WMD) and OR were used to compare continuous and dichotomous variables, respectively. The OR and 95% confidence interval (CI) were calculated for binary data. P values < 0.05 were considered to indicate statistical significance. When the mean and variance were not reported, they were calculated using the median and range through a formula reported by Hozo SP [10]. Heterogeneity between studies was assessed using the chi-squared test and I 2. A P value < 0.10 was used to indicate heterogeneity. Fixed-effect models were used for cumulative analyses when there was a lack of heterogeneity; otherwise, random-effect models were used.
The quality of all included studies was assessed using the Newcastle-Ottawa Scale (NOS) system, and patient selection, study comparability, and outcomes were evaluated. Scores ranging from 0 to 9 were calculated for each included study, and studies achieving a score of 6 or more were considered to be of good quality. Statistical analysis was performed using Review Manager Version 5.2 software (Cochrane Collaboration, Oxford, UK) (Additional file 3: Table S2).

Results

Figure 1 shows the results of the search strategy and all studies that were included and excluded. In total, 270 studies were identified from the databases. Forty-eight studies were excluded because of duplication, and 167 studies were excluded after the titles and abstracts had been reviewed. The full-text articles of 55 studies were screened in detail. Of these articles, 28 reviews were excluded, 14 conference abstracts were excluded, and 1 study comparing radiofrequency-ALPPS (RALPPS) and TSH was excluded. Another 2 studies were excluded due to the lack of regeneration data. Between the two reviewers, there was 95% agreement for study selection and 96% agreement for quality assessment of the trials.

Characteristics and quality of the included studies

Ten studies were included according to the inclusion criteria [1120]. Table 1 shows the clinical characteristics of these studies. Nine of the studies were retrospective articles, and only one randomized controlled trial (RCT) was identified. The references of these included studies indicated that no other studies existed with which to assess the topic further. In total, 201 patients in the ALPPS group and 518 patients in the TSH group were analyzed in this meta-analysis. Six studies compared ALPPS with PVE/PVL, and 4 studies compared ALPPS with PVE only. Two studies comprised a possible overlapping population, but they were both included because they investigated different outcomes [15, 20]. Complete short-term follow-up data were available in two studies. The preoperative chemotherapy rate was 48–100% in the ALPPS group and 53–87% in the TSH group.
Table 1
Clinical and pathological characteristics of the included studies
Author
Year
No. of patients
Preoperative chemotherapy
Tumor size (mm)
TNM stage
Comparable variables
Level
Study design
Quality score
Knoefel et al. [14]
2012
ALPPS(7)
PVE(15)
5
NI
NI
NI
1, 3, 7
4
RCS
6
Shindoh et al. [19]
2013
ALPPS(25)
PVE(144)
12
94
NI
NI
1, 2, 5, 7
3
RCS
7
Croome et al. [13]
2014
ALPPS(15)
PVE(53)
14
40
NI
NI
1, 2, 5, 7, 9
3
RCS
8
Schadde et al. [18]
2014
ALPPS(48)
PVE/PVL(83)
28
44
NI
NI
1, 2, 4, 5, 7, 8, 9
3
RCS
9
Ratti et al. [16]
2015
ALPPS(12)
PVE/PVL(36)
9
30
NI
NI
1, 2, 5, 6, 7, 8, 9
3
RCS
9
Matsuo et al. [15]
2015
ALPPS(8)
PVE(14)
8
12
21
35.5
NI
1, 2, 3, 5, 7
4
RCS
6
Tanaka et al. [20]
2015
ALPPS(11)
PVE/PVL(54)
11
47
22
40.5
NI
1, 2, 7
4
RCS
7
Adam et al. [11]
2016
ALPPS(17)
PVE/PVL(41)
17
41
40
50
NI
1, 2, 5, 6, 7, 8
4
RCS
7
Chia et al. [12]
2017
ALPPS(10)
PVE/PVL(29)
3
16
81
66
NI
1, 2, 4, 5, 7
4
RCS
7
Sandström et al. [17]
2017
ALPPS(48)
PVE/PVL(49)
NI
NI
54
49
NI
1, 2, 3, 5, 7, 8, 9
1
RCT
8
1: age; 2: preoperative chemotherapy; 3: preoperative liver function; 4: pathology state before operation; 5: pathology type of tumor; 6: pathology stage; 7: sex; 8: ASA score; 9: BMI
NI no information, RCS retrospective cohort study, RCT randomized controlled trial

FLR regeneration

Figure 2 summarizes the absolute value of FLR regeneration in the 6 included studies. The results of the random-effect model indicated that ALPPS led to greater regeneration than TSH did (WMD 40.25; 95% CI, 34.01~46.48; P < 0.00001).

Time interval of the two stages

Eight studies were included in this section, and the results are shown in Fig. 3. The duration before the second-stage operation was shorter for ALPPS than for TSH (WMD − 26.80; 95% CI,− 33.68~− 19.92; P < 0.00001); however, significant heterogeneity was observed (chi-square = 199.50; df = 7; P < 0.00001; I 2 = 96%).

Completion rate of second-stage operations

Nine studies included information on the completion rate for second-stage operations. There was no apparent heterogeneity in these studies (chi-square = 5.76; df = 8; P = 0.67; I 2 = 0%). The completion rate of second-stage operations was 96.89% in ALPPS and 72.62% in TSH when analyzed with a fixed model (OR 9.50; 95% CI, 4.65~19.44; P < 0.00001) (Fig. 4), and this difference was statistically significant.
The reasons for failure to complete the staged operations included tumor progression and insufficient FLR. Eight studies were included, and only 2% of patients experienced tumor progression before the second operation in ALPPS, lower than the 17.1% in TSH. (OR 0.18; 95% CI, 0.08~0.40; P < 0.0001) (Fig. 5). The difference in the insufficient regeneration rate between ALPPS and TSH was also significant, with TSH showing a higher rate than ALPPS (OR 0.29; 95% CI, 0.13~0.67; P = 0.0004) (Fig. 6).

Postoperative complications

The incidence of postoperative complications was higher in the ALPPS group after two stages, yet no significant differences were observed (Figs. 7 and 8). Eight studies included PLF data. In the ALPPS group, 9.80% of patients experienced liver failure, and this percentage was lower than the 13.96% observed in the TSH group, although this difference was not significant (OR 0.86; 95% CI, 0.46~1.64; P = 0.66) (Fig. 9). Another 5 studies mentioned postoperative bile leaks. In these studies, we observed a higher bile leak rate after the stage 2 operation in the ALPPS group (OR 2.28; 95% CI, 1.21~4.26; P = 0.009) (Fig. 10), and a similar conclusion could be drawn after stage 1, although the difference was not significant (OR 1.74; 95% CI, 0.42~7.20; P = 0.44) (Fig. 11).

R0 resection and 1-year disease-free survival

Four studies included data on R0 resection and 1-year disease-free survival, and no heterogeneity was observed in these studies (chi-square = 2.51; df = 2; P = 0.29; I 2 = 20%). The results showed that in the ALPPS group, 78.51% of patients obtained R0 resection, which was slightly higher than the 73.94% in the TSH group, although the difference was not statistically significant (OR 1.90; 95% CI, 0.87~4.19; P = 0.11) (Fig. 12). Additionally, ALPPS showed a lower 1-year disease-free survival rate than TSH did (OR 0.33; 95% CI, 0.16~0.70; P = 0.004) (Fig. 13).

Short-term outcomes

There were 7 studies related to this topic, and no heterogeneity between studies was identified (chi-square = 3.15; df = 6; P = 0.79; I 2 = 0%). Although the 90-day mortality was higher for patients receiving ALPPS (OR 1.44; 95% CI, 0.67~3.08), this difference was not statistically significant (P = 0.35) (Fig. 14).

Discussion

This systematic review and meta-analysis included 719 patients and aimed to compare the regeneration efficiency, safety, and complication rates of ALPPS and TSH. The absolute value of FLR regeneration in ALPPS was significantly higher than that in TSH, and the interval of the two stages in ALPPS was clearly shorter than that in TSH. In addition, ALPPS was associated with a higher completion rate, a lower probability of tumor progression during the stage interval, and a lower insufficient regeneration rate; these findings are similar to those of previous studies [2123]. However, complications, especially bile fistulas, were much more frequent in ALPPS, likely because of the liver splitting required in this procedure. Although ALPPS was associated with a lower rate of 1-year disease-free survival, there was no significant difference in the 90-day mortality rate between these two methods.
Given the safety of operation and possibility of PLF, a surgeon’s decision regarding a secondary ALPPS surgery is often affected by various factors. Two common factors are residual liver volume and function. In general, once the volume of liver regeneration reaches 20% of the normal liver and 30% of the cirrhotic liver, secondary surgery can be safely performed [1316, 1820]. The rate of FLR regeneration differs during the regeneration progress. For instance, Correa reported that for 10 patients who did not accept resection but received PVE, the FLR regeneration rate was different at various periods within the 1-year follow-up, and the liver continued to grow even 1 year after PVE [24]. However, the FLR regeneration volume alone still cannot reflect effective liver regeneration since patients usually have different regeneration rates after the operation. In our study, the absolute value of FLR regeneration was higher in ALPPS than in TSH, similar to the findings of previous studies. However, there was no uniform calculation of kinetic growth rate (KGR), and we did not perform a unified analysis of these included studies to better assess liver regeneration.
Furthermore, the pathological state of the liver also influences the potential for regeneration. Commonly, insufficient regeneration is accompanied by chronic liver disease. Chia et al. reported that patients with hepatitis B virus (HBV)-related cirrhosis require a longer time for regeneration before stage 2 [25]. Furthermore, neoadjuvant chemotherapy and chemotherapy have been reported to inhibit liver regeneration to some extent.
What is the best way to evaluate liver regeneration? In 2013, Shindoh et al. proposed the concept of KGR to try to resolve this issue [26]. However, KGR may reflect only the increased volume, not the increased function of the liver. Moreover, there is no uniform calculation for KGR, and therefore, this index remains controversial. Additionally, several studies have shown that many cytokines expressed during the liver regeneration process following ALPPS are associated with regeneration [2729]. Portal hemodynamics and immature hepatocytes during the process were both considered influencing factors [15, 21, 30, 31]. Given all these factors, the most effective method to evaluate the function of the FLR remains unclear and further work is necessary to address the timing and selection of optimal candidates for staged hepatectomy.
Additionally, the interval time in TSH was longer, and tumor progression was more common [32]. It is possible that the long time interval of TSH caused a higher risk of tumor progression. Only 4 patients were diagnosed with tumor progression in the ALPPS group in this study. Moreover, Fukami reported that Ki-67, a marker of cell proliferation, was increased to 80% in tumor cells after the second stage of ALPPS, and this increase was higher than that identified in the first stage in patients with colon cancers and synchronous multiple liver metastases [33]. However, there is no consensus regarding whether the rapid regeneration response in ALPPS can aggravate the progression of the primary tumor. In addition, some researchers have reported that the incidence of postoperative tumor recurrence ranges from 14 to 87%, which is higher than that of TSH. Our study also indicated a similar conclusion. Furthermore, a higher R0 ratio could be seen in the ALPPS group; this result may be related to the entire splitting of stage 1. Additionally, there is no benefit to extending the interval time before stage 2, as a decreased KGR may occur at the seventh day after stage 1 [34]. At the same time, considering that performing the stage 2 operation without sufficient preoperative assessment of the liver regeneration may easily lead to liver failure, it is necessary to establish an evaluation standard for assessing liver function after stage 1.
The mortality and complication rate are believed to be higher following ALPPS than following TSH. Our results also showed this trend although there was no significant difference between the two groups. Commonly increased portal blood, the most distinctive characteristic differentiating ALPPS from TSH, would lead to portal hyperperfusion which can conversely cause liver failure. Allard et al.’s research has shown a positive correlation between the portal vein pressure (PVP) and 90-day mortality. A multivariate analysis also indicated that PVP after hepatectomy was an independent predictor for PLF [35]. Thus, the hemodynamic change in the portal vein after hepatectomy is closely related to patient prognosis. The increased portal vein flow in ALPPS can block the circulation from two parts of the liver and result in centralized hepatic blood flow, which ultimately leads to portal hyperperfusion of the FLR [36]. However, with the hepatic artery buffering effect, the arterial flow in the non-ligated portion decreases to partly adapt to the increased portal vein flow [37]. Vicente et al. investigated the pathological specimens of small-size syndrome patients and found that sinusoidal dilatation of the tissue was directly related to liver failure [38].
There are many limitations of this meta-analysis. First, most of the included studies presented a low level of evidence, ranging from level 3 to level 4. Second, there was significant heterogeneity in some of the results because of the differences across studies in institutions, numbers of patients, types of primary tumors, and other factors. Third, there was obvious publication bias among some of the included studies.

Conclusions

In conclusion, this meta-analysis found that ALPPS was associated with a higher regeneration efficiency and a higher operation completion rate than TSH. Patients receiving TSH were more likely to experience tumor progression during the time interval. ALPPS also provided a higher rate of R0 resection, although the rate of complications after stage 2 was higher than that of TSH. However, the long-term outcome of ALPPS remains unclear, and additional studies are needed to address this issue.

Acknowledgements

None.

Funding

This work was supported by the Natural Science Foundation of Guangdong Province, China (2014A030313067 and 2014A030313144).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
All patients in this study provided informed consent before undergoing hepatectomy. All procedures in this study were performed in accordance with the principles of the Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-Sen University and with the 1964 Helsinki Declaration and its amendments.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Agrawal S, Belghiti J. Oncologic resection for malignant tumors of the liver. Ann Surg. 2011;253:656–65.CrossRefPubMed Agrawal S, Belghiti J. Oncologic resection for malignant tumors of the liver. Ann Surg. 2011;253:656–65.CrossRefPubMed
2.
Zurück zum Zitat Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med. 2007;356:1545–59.CrossRefPubMed Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med. 2007;356:1545–59.CrossRefPubMed
3.
Zurück zum Zitat Jaeck D, Oussoultzoglou E, Rosso E, Greget M, Weber JC, Bachellier P. A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann Surg. 2004;240:1037–49. discussion 1049-1051CrossRefPubMedPubMedCentral Jaeck D, Oussoultzoglou E, Rosso E, Greget M, Weber JC, Bachellier P. A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann Surg. 2004;240:1037–49. discussion 1049-1051CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Abulkhir A, Limongelli P, Healey AJ, Damrah O, Tait P, Jackson J, Habib N, Jiao LR. Preoperative portal vein embolization for major liver resection: a meta-analysis. Ann Surg. 2008;247:49–57.CrossRefPubMed Abulkhir A, Limongelli P, Healey AJ, Damrah O, Tait P, Jackson J, Habib N, Jiao LR. Preoperative portal vein embolization for major liver resection: a meta-analysis. Ann Surg. 2008;247:49–57.CrossRefPubMed
5.
Zurück zum Zitat Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T, Goralcyk A, Hörbelt R. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255:405.CrossRefPubMed Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T, Goralcyk A, Hörbelt R. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255:405.CrossRefPubMed
6.
Zurück zum Zitat Vivarelli M, Vincenzi P, Montalti R, Fava G, Tavio M, Coletta M, Vecchi A, Nicolini D, Agostini A, Ahmed EA, et al. ALPPS procedure for extended liver resections: a single centre experience and a systematic review. PLoS One. 2015;10:e0144019.CrossRefPubMedPubMedCentral Vivarelli M, Vincenzi P, Montalti R, Fava G, Tavio M, Coletta M, Vecchi A, Nicolini D, Agostini A, Ahmed EA, et al. ALPPS procedure for extended liver resections: a single centre experience and a systematic review. PLoS One. 2015;10:e0144019.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Edmondson MJ, Sodergren MH, Pucher PH, Darzi A, Li J, Petrowsky H, Campos RR, Serrablo A, Jiao LR. Variations and adaptations of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS): many routes to the summit. Surgery. 2016;159:1058–72.CrossRefPubMed Edmondson MJ, Sodergren MH, Pucher PH, Darzi A, Li J, Petrowsky H, Campos RR, Serrablo A, Jiao LR. Variations and adaptations of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS): many routes to the summit. Surgery. 2016;159:1058–72.CrossRefPubMed
8.
Zurück zum Zitat Cai YL, Song PP, Tang W, Cheng NS. An updated systematic review of the evolution of ALPPS and evaluation of its advantages and disadvantages in accordance with current evidence. Medicine (Baltimore). 2016;95:e3941.CrossRef Cai YL, Song PP, Tang W, Cheng NS. An updated systematic review of the evolution of ALPPS and evaluation of its advantages and disadvantages in accordance with current evidence. Medicine (Baltimore). 2016;95:e3941.CrossRef
9.
Zurück zum Zitat Hidding JT, Beurskens CHG, Wees PJVD, Laarhoven HWMV, Sanden NVD: Oxford Centre for Evidence-Based Medicine, 2011 levels of evidence for common harms (treatment harms). 2014. Hidding JT, Beurskens CHG, Wees PJVD, Laarhoven HWMV, Sanden NVD: Oxford Centre for Evidence-Based Medicine, 2011 levels of evidence for common harms (treatment harms). 2014.
10.
Zurück zum Zitat Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.CrossRefPubMedPubMedCentral Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Adam R, Imai K, Castro Benitez C, Allard MA, Vibert E, Sa Cunha A, Cherqui D, Baba H, Castaing D. Outcome after associating liver partition and portal vein ligation for staged hepatectomy and conventional two-stage hepatectomy for colorectal liver metastases. Br J Surg. 2016;103:1521.CrossRefPubMed Adam R, Imai K, Castro Benitez C, Allard MA, Vibert E, Sa Cunha A, Cherqui D, Baba H, Castaing D. Outcome after associating liver partition and portal vein ligation for staged hepatectomy and conventional two-stage hepatectomy for colorectal liver metastases. Br J Surg. 2016;103:1521.CrossRefPubMed
12.
Zurück zum Zitat Chia D, Yeo Z, Loh S, Iyer SG, Bonney GK, Madhavan K, Kow A. Greater hypertrophy can be achieved with associating liver partition with portal vein ligation for staged hepatectomy compared to conventional staged hepatectomy, but with a higher price to pay? American Journal of Surgery. 2017; Chia D, Yeo Z, Loh S, Iyer SG, Bonney GK, Madhavan K, Kow A. Greater hypertrophy can be achieved with associating liver partition with portal vein ligation for staged hepatectomy compared to conventional staged hepatectomy, but with a higher price to pay? American Journal of Surgery. 2017;
13.
Zurück zum Zitat Croome KP, Hernandez-Alejandro R, Parker M, Heimbach J, Rosen C, Nagorney DM. Is the liver kinetic growth rate in ALPPS unprecedented when compared with PVE and living donor liver transplant? A multicentre analysis. HPB. 2015;17:477–84.CrossRefPubMedPubMedCentral Croome KP, Hernandez-Alejandro R, Parker M, Heimbach J, Rosen C, Nagorney DM. Is the liver kinetic growth rate in ALPPS unprecedented when compared with PVE and living donor liver transplant? A multicentre analysis. HPB. 2015;17:477–84.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Knoefel WT, Gabor I, Rehders A, Alexander A, Krausch M, Esch JSA, Fürst G, Topp SA. In situ liver transection with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection. Br J Surg. 2013;100:388–94.CrossRefPubMed Knoefel WT, Gabor I, Rehders A, Alexander A, Krausch M, Esch JSA, Fürst G, Topp SA. In situ liver transection with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection. Br J Surg. 2013;100:388–94.CrossRefPubMed
15.
Zurück zum Zitat Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, Yamazaki K, Ishida Y, Tanaka K. Histologic features after surgery associating liver partition and portal vein ligation for staged hepatectomy versus those after hepatectomy with portal vein embolization. Surgery. 2016;159:1289.CrossRefPubMed Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, Yamazaki K, Ishida Y, Tanaka K. Histologic features after surgery associating liver partition and portal vein ligation for staged hepatectomy versus those after hepatectomy with portal vein embolization. Surgery. 2016;159:1289.CrossRefPubMed
16.
Zurück zum Zitat Ratti F, Schadde E, Masetti M, Massani M, Zanello M, Serenari M, Cipriani F, Bonariol L, Bassi N, Aldrighetti L. Strategies to increase the resectability of patients with colorectal liver metastases: a multi-center case-match analysis of ALPPS and conventional two-stage hepatectomy. Ann Surg Oncol. 2015;22:1933–42.CrossRefPubMed Ratti F, Schadde E, Masetti M, Massani M, Zanello M, Serenari M, Cipriani F, Bonariol L, Bassi N, Aldrighetti L. Strategies to increase the resectability of patients with colorectal liver metastases: a multi-center case-match analysis of ALPPS and conventional two-stage hepatectomy. Ann Surg Oncol. 2015;22:1933–42.CrossRefPubMed
17.
Zurück zum Zitat Sandström P, Røsok BI, Sparrelid E, Larsen PN, Larsson AL, Lindell G, Schultz NA, Bjørnbeth BA, Isaksson B, Rizell M. ALPPS improves resectability compared with conventional two-stage hepatectomy in patients with advanced colorectal liver metastasis: results from a Scandinavian multicenter randomized controlled trial (LIGRO trial). Ann Surg. 2017; doi:10.1097/SLA.0000000000002511. Sandström P, Røsok BI, Sparrelid E, Larsen PN, Larsson AL, Lindell G, Schultz NA, Bjørnbeth BA, Isaksson B, Rizell M. ALPPS improves resectability compared with conventional two-stage hepatectomy in patients with advanced colorectal liver metastasis: results from a Scandinavian multicenter randomized controlled trial (LIGRO trial). Ann Surg. 2017; doi:10.​1097/​SLA.​0000000000002511​.
18.
Zurück zum Zitat Schadde E, Ardiles V, Slankamenac K, Tschuor C, Sergeant G, Amacker N, Baumgart J, Croome K, Hernandez-Alejandro R, Lang H. ALPPS offers a better chance of complete resection in patients with primarily unresectable liver tumors compared with conventional-staged hepatectomies: results of a multicenter analysis. World J Surg. 2014;38:1510.CrossRefPubMed Schadde E, Ardiles V, Slankamenac K, Tschuor C, Sergeant G, Amacker N, Baumgart J, Croome K, Hernandez-Alejandro R, Lang H. ALPPS offers a better chance of complete resection in patients with primarily unresectable liver tumors compared with conventional-staged hepatectomies: results of a multicenter analysis. World J Surg. 2014;38:1510.CrossRefPubMed
19.
Zurück zum Zitat Shindoh J, Vauthey JN, Zimmitti G, Curley SA, Huang SY, Mahvash A, Gupta S, Wallace MJ, Aloia TA. Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume, including a comparison with the associating liver partition with portal vein ligation for staged hepatectomy approach. J Am Coll Surg. 2013;217:126–33. discussion 133-124CrossRefPubMed Shindoh J, Vauthey JN, Zimmitti G, Curley SA, Huang SY, Mahvash A, Gupta S, Wallace MJ, Aloia TA. Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume, including a comparison with the associating liver partition with portal vein ligation for staged hepatectomy approach. J Am Coll Surg. 2013;217:126–33. discussion 133-124CrossRefPubMed
20.
Zurück zum Zitat Tanaka K, Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, Endo I, Ichikawa Y, Taguri M, Tanabe M. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): short-term outcome, functional changes in the future liver remnant, and tumor growth activity. European Journal of Surgical Oncology the Journal of the European Society of Surgical Oncology & the British Association of Surgical Oncology. 2015;41:506. Tanaka K, Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, Endo I, Ichikawa Y, Taguri M, Tanabe M. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): short-term outcome, functional changes in the future liver remnant, and tumor growth activity. European Journal of Surgical Oncology the Journal of the European Society of Surgical Oncology & the British Association of Surgical Oncology. 2015;41:506.
21.
Zurück zum Zitat Bertens KA, Hawel J, Lung K, Buac S, Pineda-Solis K, Hernandez-Alejandro R. ALPPS: challenging the concept of unresectability—a systematic review. Int J Surg. 2014;13:280.CrossRefPubMed Bertens KA, Hawel J, Lung K, Buac S, Pineda-Solis K, Hernandez-Alejandro R. ALPPS: challenging the concept of unresectability—a systematic review. Int J Surg. 2014;13:280.CrossRefPubMed
22.
Zurück zum Zitat Schadde E, Schnitzbauer AA, Tschuor C, Raptis DA, Bechstein WO, Clavien PA. Systematic review and meta-analysis of feasibility, safety, and efficacy of a novel procedure: associating liver partition and portal vein ligation for staged hepatectomy. Ann Surg Oncol. 2015;22:3109–20.CrossRefPubMed Schadde E, Schnitzbauer AA, Tschuor C, Raptis DA, Bechstein WO, Clavien PA. Systematic review and meta-analysis of feasibility, safety, and efficacy of a novel procedure: associating liver partition and portal vein ligation for staged hepatectomy. Ann Surg Oncol. 2015;22:3109–20.CrossRefPubMed
23.
Zurück zum Zitat Zhang GQ, Zhang ZW, Lau WY, Chen XP. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a new strategy to increase resectability in liver surgery. Int J Surg. 2014;12:437–41.CrossRefPubMed Zhang GQ, Zhang ZW, Lau WY, Chen XP. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a new strategy to increase resectability in liver surgery. Int J Surg. 2014;12:437–41.CrossRefPubMed
24.
Zurück zum Zitat Liu W, Zhou JG, Sun Y, Zhang L, Xing BC. Hepatic resection improved the long-term survival of patients with BCLC stage B hepatocellular carcinoma in Asia: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19:1271–80.CrossRefPubMed Liu W, Zhou JG, Sun Y, Zhang L, Xing BC. Hepatic resection improved the long-term survival of patients with BCLC stage B hepatocellular carcinoma in Asia: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19:1271–80.CrossRefPubMed
25.
Zurück zum Zitat Chia NH, Lai EC, Lau WY. Associating liver partition and portal vein ligation for a patient with hepatocellular carcinoma with a background of hepatitis B related fibrotic liver. Int J Surg Case Rep. 2014;5:1077–81.CrossRefPubMedPubMedCentral Chia NH, Lai EC, Lau WY. Associating liver partition and portal vein ligation for a patient with hepatocellular carcinoma with a background of hepatitis B related fibrotic liver. Int J Surg Case Rep. 2014;5:1077–81.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Shindoh J, Truty MJ, Aloia TA, Curley SA, Zimmitti G, Huang SY, Mahvash A, Gupta S, Wallace MJ, Vauthey JN. Kinetic growth rate after portal vein embolization predicts posthepatectomy outcomes: toward zero liver-related mortality in patients with colorectal liver metastases and small future liver remnant. J Am Coll Surg. 2013;216:201–9.CrossRefPubMed Shindoh J, Truty MJ, Aloia TA, Curley SA, Zimmitti G, Huang SY, Mahvash A, Gupta S, Wallace MJ, Vauthey JN. Kinetic growth rate after portal vein embolization predicts posthepatectomy outcomes: toward zero liver-related mortality in patients with colorectal liver metastases and small future liver remnant. J Am Coll Surg. 2013;216:201–9.CrossRefPubMed
27.
Zurück zum Zitat Almau Trenard HM, Moulin LE, Padin JM, Stringa P, Gondolesi GE, Barros Schelotto P. Development of an experimental model of portal vein ligation associated with parenchymal transection (ALPPS) in rats. Cir Esp. 2014;92:676–81.CrossRefPubMed Almau Trenard HM, Moulin LE, Padin JM, Stringa P, Gondolesi GE, Barros Schelotto P. Development of an experimental model of portal vein ligation associated with parenchymal transection (ALPPS) in rats. Cir Esp. 2014;92:676–81.CrossRefPubMed
28.
Zurück zum Zitat Croome KP, Mao SA, Glorioso JM, Krishna M, Nyberg SL, Nagorney DM. Characterization of a porcine model for associating liver partition and portal vein ligation for a staged hepatectomy. HPB (Oxford). 2015;17:1130–6.CrossRef Croome KP, Mao SA, Glorioso JM, Krishna M, Nyberg SL, Nagorney DM. Characterization of a porcine model for associating liver partition and portal vein ligation for a staged hepatectomy. HPB (Oxford). 2015;17:1130–6.CrossRef
29.
Zurück zum Zitat Schlegel A, Lesurtel M, Melloul E, Limani P, Tschuor C, Graf R, Humar B, Clavien PA. ALPPS: from human to mice highlighting accelerated and novel mechanisms of liver regeneration. Ann Surg. 2014;260:839–46. discussion 846-837CrossRefPubMed Schlegel A, Lesurtel M, Melloul E, Limani P, Tschuor C, Graf R, Humar B, Clavien PA. ALPPS: from human to mice highlighting accelerated and novel mechanisms of liver regeneration. Ann Surg. 2014;260:839–46. discussion 846-837CrossRefPubMed
30.
Zurück zum Zitat Alvarez FA, Ardiles V, Sanchez Claria R, Pekolj J, de Santibanes E. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg. 2013;17:814–21.CrossRefPubMed Alvarez FA, Ardiles V, Sanchez Claria R, Pekolj J, de Santibanes E. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg. 2013;17:814–21.CrossRefPubMed
31.
Zurück zum Zitat Shindoh J, Vauthey JN, Zimmitti G, Curley SA, Huang SY, Mahvash A, Gupta S, Wallace MJ, Aloia TA. Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume including a comparison to the ALPPS approach. J Am Coll Surg. 2013;217:126–33.CrossRefPubMed Shindoh J, Vauthey JN, Zimmitti G, Curley SA, Huang SY, Mahvash A, Gupta S, Wallace MJ, Aloia TA. Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume including a comparison to the ALPPS approach. J Am Coll Surg. 2013;217:126–33.CrossRefPubMed
32.
Zurück zum Zitat Robles R, Parrilla P, Lopez-Conesa A, Brusadin R, de la Pena J, Fuster M, Garcia-Lopez JA, Hernandez E. Tourniquet modification of the associating liver partition and portal ligation for staged hepatectomy procedure. Br J Surg. 2014;101:1129–34. discussion 1134CrossRefPubMed Robles R, Parrilla P, Lopez-Conesa A, Brusadin R, de la Pena J, Fuster M, Garcia-Lopez JA, Hernandez E. Tourniquet modification of the associating liver partition and portal ligation for staged hepatectomy procedure. Br J Surg. 2014;101:1129–34. discussion 1134CrossRefPubMed
33.
Zurück zum Zitat Fukami Y, Kurumiya Y, Kobayashi S. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): an analysis of tumor activity. Updat Surg. 2014;66:223–5.CrossRef Fukami Y, Kurumiya Y, Kobayashi S. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): an analysis of tumor activity. Updat Surg. 2014;66:223–5.CrossRef
34.
Zurück zum Zitat Truant S, Scatton O, Dokmak S, Regimbeau JM, Lucidi V, Laurent A, Gauzolino R, Castro Benitez C, Pequignot A, Donckier V, et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): impact of the inter-stages course on morbi-mortality and implications for management. Eur J Surg Oncol. 2015;41:674–82.CrossRefPubMed Truant S, Scatton O, Dokmak S, Regimbeau JM, Lucidi V, Laurent A, Gauzolino R, Castro Benitez C, Pequignot A, Donckier V, et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): impact of the inter-stages course on morbi-mortality and implications for management. Eur J Surg Oncol. 2015;41:674–82.CrossRefPubMed
35.
Zurück zum Zitat Allard MA, Adam R, Bucur PO, Termos S, Cunha AS, Bismuth H, Castaing D, Vibert E. Posthepatectomy portal vein pressure predicts liver failure and mortality after major liver resection on noncirrhotic liver. Ann Surg. 2013;258:822–9. discussion 829-830CrossRefPubMed Allard MA, Adam R, Bucur PO, Termos S, Cunha AS, Bismuth H, Castaing D, Vibert E. Posthepatectomy portal vein pressure predicts liver failure and mortality after major liver resection on noncirrhotic liver. Ann Surg. 2013;258:822–9. discussion 829-830CrossRefPubMed
36.
Zurück zum Zitat Sakuhara Y, Abo D, Hasegawa Y, Shimizu T, Kamiyama T, Hirano S, Fukumori D, Kawamura T, Ito YM, Tha KK, et al. Preoperative percutaneous transhepatic portal vein embolization with ethanol injection. AJR Am J Roentgenol. 2012;198:914–22.CrossRefPubMed Sakuhara Y, Abo D, Hasegawa Y, Shimizu T, Kamiyama T, Hirano S, Fukumori D, Kawamura T, Ito YM, Tha KK, et al. Preoperative percutaneous transhepatic portal vein embolization with ethanol injection. AJR Am J Roentgenol. 2012;198:914–22.CrossRefPubMed
37.
Zurück zum Zitat Yokoyama Y, Nagino M, Nimura Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J Surg. 2007;31:367–74.CrossRefPubMed Yokoyama Y, Nagino M, Nimura Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J Surg. 2007;31:367–74.CrossRefPubMed
38.
Zurück zum Zitat Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I, Olivares S, Prestera A, Caruso R. Is “small for size syndrome” a relatively new complication after the ALPPS procedure? Updat Surg. 2015;67:273.CrossRef Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I, Olivares S, Prestera A, Caruso R. Is “small for size syndrome” a relatively new complication after the ALPPS procedure? Updat Surg. 2015;67:273.CrossRef
Metadaten
Titel
Associating liver partition and portal vein ligation for staged hepatectomy versus conventional two-stage hepatectomy: a systematic review and meta-analysis
verfasst von
Zheng Zhou
Mingxing Xu
Nan Lin
Chuzhi Pan
Boxuan Zhou
Yuesi Zhong
Ruiyun Xu
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2017
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-017-1295-0

Weitere Artikel der Ausgabe 1/2017

World Journal of Surgical Oncology 1/2017 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.