Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 6/2014

01.12.2014 | Original Research

Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD

verfasst von: Lars P. Thomsen, Ulla M. Weinreich, Dan S. Karbing, Peter D. Wagner, Stephen E. Rees

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Bedside estimation of pulmonary gas exchange efficiency may be possible from step changes in FiO2 and subsequent measurement of arterial oxygenation at steady state conditions. However, a steady state may not be achieved quickly after a change in FiO2, especially in patients with lung disease such as COPD, rendering this approach cumbersome. This paper investigates whether breath by breath measurement of respiratory gas and arterial oxygen levels as FiO2 is changed can be used as a much more rapid alternative to collecting data from steady state conditions for measuring pulmonary gas exchange efficiency. Fourteen patients with COPD were studied using 4–5 step changes in FiO2 in the range of 0.15–0.35. Values of expired respiratory gas and arterial oxygenation were used to calculate and compare the parameters of a mathematical model of pulmonary gas exchange in two cases: from data at steady state; and from breath by breath data prior to achievement of a steady state. For each patient, the breath by breath data were corrected for the delay in arterial oxygen saturation changes following each change in FiO2. Calculated model parameters were shown to be similar for the two data sets, with Bland–Altman bias and limits of agreement of −0.4 and −3.0 to 2.2 % for calculation of pulmonary shunt and 0.17 and −0.47 to 0.81 kPa for alveolar to end-capillary PO2, a measure of oxygen abnormality due to shunting plus regions of low \({\dot{\text{V}}}\) a/\({\dot{\text{Q}}}\) ratio. This study shows that steady state oxygen levels may not be necessary when estimating pulmonary gas exchange using changes in FiO2. As such this technique may be applicable in patients with lung disease such as COPD.
Literatur
1.
Zurück zum Zitat Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerod C, Andreassen S, Rees SE. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRefPubMedPubMedCentral Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerod C, Andreassen S, Rees SE. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation–perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.PubMed Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation–perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.PubMed
3.
Zurück zum Zitat Lenfant C. Measurement of ventilation/perfusion distribution with alveolar–arterial differences. J Appl Physiol. 1963;18(6):1090–4.PubMed Lenfant C. Measurement of ventilation/perfusion distribution with alveolar–arterial differences. J Appl Physiol. 1963;18(6):1090–4.PubMed
4.
Zurück zum Zitat Rees SE, Kjaergaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The automatic lung parameter estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17(1):43–52.CrossRefPubMed Rees SE, Kjaergaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The automatic lung parameter estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17(1):43–52.CrossRefPubMed
5.
Zurück zum Zitat Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, Toft E, Thorgaard P, Andreassen S, Rees SE. Clinical refinement of the automatic lung parameter estimator (ALPE). J Clin Monit Comput. 2013;27(3):341–50.CrossRefPubMed Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, Toft E, Thorgaard P, Andreassen S, Rees SE. Clinical refinement of the automatic lung parameter estimator (ALPE). J Clin Monit Comput. 2013;27(3):341–50.CrossRefPubMed
6.
Zurück zum Zitat Weinreich UM, Thomsen LP, Hansen A, Kjaergaard S, Wagner PD, Rees SE. Time to steady state after changes in FIO in patients with COPD. COPD. 2013;10(4):405–10.CrossRefPubMed Weinreich UM, Thomsen LP, Hansen A, Kjaergaard S, Wagner PD, Rees SE. Time to steady state after changes in FIO in patients with COPD. COPD. 2013;10(4):405–10.CrossRefPubMed
7.
Zurück zum Zitat Young D, Jewkes C, Spittal M, Blogg C, Weissman J, Gradwell D. Response time of pulse oximeters assessed using acute decompression. Anesth Analg. 1992;74(2):189–95.CrossRefPubMed Young D, Jewkes C, Spittal M, Blogg C, Weissman J, Gradwell D. Response time of pulse oximeters assessed using acute decompression. Anesth Analg. 1992;74(2):189–95.CrossRefPubMed
8.
Zurück zum Zitat Zubieta-Calleja GR, Zubieta-Castillo G, Paulev PE, Zubieta-Calleja L. Non-invasive measurement of circulation time using pulse oximetry during breath holding in chronic hypoxia. J Physiol Pharmacol. 2005;56(Suppl 4):251–6.PubMed Zubieta-Calleja GR, Zubieta-Castillo G, Paulev PE, Zubieta-Calleja L. Non-invasive measurement of circulation time using pulse oximetry during breath holding in chronic hypoxia. J Physiol Pharmacol. 2005;56(Suppl 4):251–6.PubMed
9.
Zurück zum Zitat MacLeod DB, Cortinez LI, Keifer JC, Cameron D, Wright DR, White WD, Moretti EW, Radulescu LR, Somma J. The desaturation response time of finger pulse oximeters during mild hypothermia. Anaesthesia. 2005;60(1):65–71.CrossRefPubMed MacLeod DB, Cortinez LI, Keifer JC, Cameron D, Wright DR, White WD, Moretti EW, Radulescu LR, Somma J. The desaturation response time of finger pulse oximeters during mild hypothermia. Anaesthesia. 2005;60(1):65–71.CrossRefPubMed
10.
Zurück zum Zitat Yönt GH, Korhan EA, Khorshid L. Comparison of oxygen saturation values and measurement times by pulse oximetry in various parts of the body. Appl Nurs Res. 2011;24(4):e39–43.CrossRefPubMed Yönt GH, Korhan EA, Khorshid L. Comparison of oxygen saturation values and measurement times by pulse oximetry in various parts of the body. Appl Nurs Res. 2011;24(4):e39–43.CrossRefPubMed
11.
Zurück zum Zitat Ding ZN, Shibata K, Yamamoto K, Kobayashi T, Murakami S. Decreased circulation time in the upper limb reduces the lag time of the finger pulse oximeter response. Can J Anaesth. 1992;39(1):87–9.CrossRefPubMed Ding ZN, Shibata K, Yamamoto K, Kobayashi T, Murakami S. Decreased circulation time in the upper limb reduces the lag time of the finger pulse oximeter response. Can J Anaesth. 1992;39(1):87–9.CrossRefPubMed
12.
Zurück zum Zitat Shamir M, Eidelman L, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81.CrossRefPubMed Shamir M, Eidelman L, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81.CrossRefPubMed
13.
Zurück zum Zitat Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation–perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRefPubMed Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation–perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRefPubMed
14.
Zurück zum Zitat Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33(2):240–8.CrossRefPubMed Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33(2):240–8.CrossRefPubMed
15.
Zurück zum Zitat Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol. 1982;50(2):255–62.CrossRefPubMed Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol. 1982;50(2):255–62.CrossRefPubMed
16.
Zurück zum Zitat Biernacki W, Flenley D, Muir A, MacNee W. Pulmonary hypertension and right ventricular function in patients with COPD. CHEST J. 1988;94(6):1169–75.CrossRef Biernacki W, Flenley D, Muir A, MacNee W. Pulmonary hypertension and right ventricular function in patients with COPD. CHEST J. 1988;94(6):1169–75.CrossRef
17.
Zurück zum Zitat Agustí A, Barbera JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994;49(9):924–32.CrossRefPubMedPubMedCentral Agustí A, Barbera JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994;49(9):924–32.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Rodríguez-Roisin R, Drakulovic M, Rodríguez DA, Roca J, Barberà JA, Wagner PD. Ventilation–perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol. 2009;106(6):1902–8.CrossRefPubMed Rodríguez-Roisin R, Drakulovic M, Rodríguez DA, Roca J, Barberà JA, Wagner PD. Ventilation–perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol. 2009;106(6):1902–8.CrossRefPubMed
19.
Zurück zum Zitat Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs: a stimulus-response study. Anesthesiology. 1997;86(2):308–15.CrossRefPubMed Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs: a stimulus-response study. Anesthesiology. 1997;86(2):308–15.CrossRefPubMed
20.
Zurück zum Zitat Rees SE. The intelligent ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Programs Biomed. 2011;104:S1–29.CrossRefPubMed Rees SE. The intelligent ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Programs Biomed. 2011;104:S1–29.CrossRefPubMed
Metadaten
Titel
Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD
verfasst von
Lars P. Thomsen
Ulla M. Weinreich
Dan S. Karbing
Peter D. Wagner
Stephen E. Rees
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 6/2014
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-014-9622-2

Weitere Artikel der Ausgabe 6/2014

Journal of Clinical Monitoring and Computing 6/2014 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.