Skip to main content
Erschienen in: European Radiology 8/2021

Open Access 30.05.2021 | Breast

Preoperative breast magnetic resonance imaging in patients with ductal carcinoma in situ: a systematic review for the European Commission Initiative on Breast Cancer (ECIBC)

verfasst von: Carlos Canelo-Aybar, Alvaro Taype-Rondan, Jessica Hanae Zafra-Tanaka, David Rigau, Axel Graewingholt, Annette Lebeau, Elsa Pérez Gómez, Paolo Giorgi Rossi, Miranda Langendam, Margarita Posso, Elena Parmelli, Zuleika Saz-Parkinson, Pablo Alonso-Coello

Erschienen in: European Radiology | Ausgabe 8/2021

Abstract

Objective

To evaluate the impact of preoperative MRI in the management of Ductal carcinoma in situ (DCIS).

Methods

We searched the PubMed, EMBASE and Cochrane Library databases to identify randomised clinical trials (RCTs) or cohort studies assessing the impact of preoperative breast MRI in surgical outcomes, treatment change or loco-regional recurrence. We provided pooled estimates for odds ratios (OR), relative risks (RR) and proportions and assessed the certainty of the evidence using the GRADE approach.

Results

We included 3 RCTs and 23 observational cohorts, corresponding to 20,415 patients. For initial breast-conserving surgery (BCS), the RCTs showed that MRI may result in little to no difference (RR 0.95, 95% CI 0.90 to 1.00) (low certainty); observational studies showed that MRI may have no difference in the odds of re-operation after BCS (OR 0.96; 95% CI 0.36 to 2.61) (low certainty); and uncertain evidence from RCTs suggests little to no difference with respect to total mastectomy rate (RR 0.91; 95% CI 0.65 to 1.27) (very low certainty). We also found that MRI may change the initial treatment plans in 17% (95% CI 12 to 24%) of cases, but with little to no effect on locoregional recurrence (aHR = 1.18; 95% CI 0.79 to 1.76) (very low certainty).

Conclusion

We found evidence of low to very low certainty which may suggest there is no improvement of surgical outcomes with pre-operative MRI assessment of women with DCIS lesions. There is a need for large rigorously conducted RCTs to evaluate the role of preoperative MRI in this population.

Key Points

• Evidence of low to very low certainty may suggest there is no improvement in surgical outcomes with pre-operative MRI.
• There is a need for large rigorously conducted RCTs evaluating the role of preoperative MRI to improve treatment planning for DCIS.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00330-021-07873-2.
The original online version of this article was revised: In this article the author name Miranda Langendam was incorrectly written as Miranda Langedam.
A comment to this article is available online at https://​doi.​org/​10.​1007/​s00330-021-08057-8.
A correction to this article is available online at https://​doi.​org/​10.​1007/​s00330-021-08489-2.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
aOR
Adjusted odds ratios
BCS
Breast-conserving-surgery
DCIS
Ductal carcinoma in situ
ECIBC
European Commission Initiative on Breast Cancer
GDG
Guidelines Development Group
IBC
Invasive breast carcinomas
MRI
Magnetic resonance imaging
OR
Odds ratios
PICO
Population, Intervention, Comparison and Outcomes
RCTs
Randomised clinical trials
ROBINS-I
Risk Of Bias in Non-randomised Studies of Interventions-I
RR
Relative risks
SoF
Summary of findings

Introduction

In 2018, globally, an estimated 2 million new cases of breast cancer (BC) were reported [1]. Ductal carcinoma in situ (DCIS) of the breast is the most common form of non-invasive BC, and includes a heterogeneous group of atypical cell proliferation confined within the basement membrane of the ducts [2]. Over the last decades, the detection of DCIS has increased, likely because of the widespread use of screening mammography, accounting for 20 to 25% of newly diagnosed BC in screened populations [3].
Nowadays, breast-conserving surgery (BCS) has been adopted as a treatment option for patients with small, screen-detected lesions [4]. The addition of adjuvant radiation and hormonal therapy after BCS has been shown to reduce the risk of invasive recurrence [4]. However, complete surgical excision is not always possible due to the suboptimal preoperative evaluation of the extent of the lesion by standard imaging (mammography, ultrasound). Therefore, re-operation for positive margins is often required in DCIS, with rates ranging from 17 to 58% [5].
Magnetic resonance imaging (MRI) has a higher sensitivity for BC diagnosis preferentially detecting more aggressive/invasive types [6]. It has been proposed as an additional test after mammography, to improve the assessment of the extent of DCIS during the preoperative planning, providing better identification of candidates for BCS especially in the context of extensive microcalcifications [7]. Despite previous reviews suggesting MRI benefits [810], there is still uncertainty as some studies suggest it may overestimate the extent of disease, leading to an increase of unnecessary mastectomies or wider excisions [11, 12].
The European Commission Initiative on Breast Cancer (ECIBC) develops the European Guidelines on Breast Cancer Screening and Diagnosis [13]. This systematic review informed the recommendations of preoperative breast MRI (Prospero register: 42018099453). During the guidelines process [13], the Guidelines Development Group (GDG) made detailed considerations on the evidence about effects, values and preferences, equity, acceptability and feasibility to issue recommendations. We encourage readers to refer to these considerations in the published recommendations on the ECIBC website (https://​healthcare-quality.​jrc.​ec.​europa.​eu/​european-breast-cancer-guidelines/​surgical-planning/​MRI)

Methods

Structured question and outcome prioritisation

The clinical question prioritised by the GDG was “Should additional MRI vs no additional MRI be used in women with histologically confirmed DCIS for preoperative planning?”.
Outcomes were prioritised using a 1 to 9 scale as suggested by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach (Box 1).
Box 1 Structured clinical question
Population
Intervention
Comparison
Outcomes
Women with confirmed DCIS on preoperative histology
Preoperative breast MRI
No preoperative breast MRI
• MRI triggered treatment change, as the decision to perform a wider excision, a mastectomy or a bilateral mastectomy when a more conservative approach were originally planned before MRI results
• Initial breast-conserving surgery (BCS), a patient not undergoing mastectomy within the initial surgical treatmenta
• Re-operation after breast-conserving surgery, either a wider local excision or mastectomy after the first surgery
• Proportion of positive margins after breast-conserving surgery, absence of clear margins at the pathologic assessment of the specimen after surgical resection
• Total mastectomy, the last definitive mastectomy, including initial and additional mastectomy due to re-operation
• Disease-free survival (inferred from loco-regional recurrence)
• Quality of life
aAn increase in this outcome is a desirable change as it is a complementary event to initial mastectomy

Data sources and searches

We searched the MEDLINE (via PubMed, April 2018), EMBASE (via Ovid, April 2018) and CENTRAL (via The Cochrane Library, March 2018) databases using pre-defined algorithms. In addition, we updated our initial search during the first week of January 2021 (Supplementary Table 1), and GDG members were consulted about potential missing studies.

Study selection

We included randomised controlled trials (RCT) and cohort studies that compared preoperative MRI with no MRI in women with histologically confirmed DCIS. We excluded studies that included women with invasive breast carcinomas (IBC), those that did not provide stratified results for women with DCIS, conference abstracts and articles published in languages other than English.
Initially, two calibrated reviewers (A.T.R. and J.Z.) assessed the eligibility at title and abstract level. In a second step, the two reviewers independently reviewed the full text of all the selected references. Discrepancies were solved by consensus or with the help of a third reviewer (CCA).

Data extraction and risk of bias assessment

Three reviewers (A.T.R., J.Z., C.C.A.) independently extracted data and assessed the risk of bias using the Cochrane Risk of Bias tool [14] for RCTs and the “Risk Of Bias in Non-randomised Studies of Interventions-I” (ROBINS-I) for observational studies. Before applying the latter tool, we specified relevant confounding variables (i.e. age, family history of BC, tumour size) [15].

Data analysis

From RCTs, we extracted crude relative risks (RR), and from observational studies, we obtained adjusted odds ratios (aOR) or hazard ratios (aHR) when available. We did not pool the results obtained from both types of designs. Pooled effect sizes were estimated using a random effects model with the Mantel-Haenzel or inverse variance method. To estimate between-study variance and confidence intervals, we used the Paule-Mendel and Q-profile methods. To pool the proportion of MRI-treatment changes, we implemented a generalised linear mixed random model with a logit transformation, and the Clopper-Pearson method to estimate the confidence interval for individual study results.
Heterogeneity between studies was evaluated by visual inspection of forest plots for all outcomes and complemented with the assessment of the Q statistic and I2 parameter for relative effects, as they are not recommended for proportions [16]. The following potential sources of heterogeneity were examined: the extent of microcalcifications, risk of bias, adjusted or crude effect sizes, prospective or retrospective design for observational studies and publication year (post hoc). We performed all analysis in RStudio.

Certainty of the evidence

We rated the certainty of the evidence separately for RCTs and observational studies for each of the prioritised outcomes using the GRADE approach [17]. For the assessment of the certainty of observational evidence, we started from high certainty, as this is the recommended procedure when the ROBINS-I tool is used [18].

Results

Search results

In the initial search until April 2018, we retrieved 5260 unique citations. Initially, we included a total of 20 studies; this was the original evidence synthesis used to develop the ECIBC recommendations. Finally, after the update search (January 2021), we included six additional studies and the update of a previously included cohort (Fig. 1). Reasons for exclusion are detailed in Supplementary table S2.

Study characteristics

Three studies were RCTs [1921], 18 were comparative cohorts [11, 12, 2236] and five were single arm cohorts [12, 21, 3739], with a total of 20,415 patients (260 from the RCTs and 20,155 from the observational studies). Most studies were conducted in the USA or in the Netherlands. The mean ages of the recruited patients ranged from 40 to 63 years across all studies. Only one study included all patients with microcalcified lesions, while two studies reported the percentage of microcalcified lesions (range 76 to 99%) (Table 1 and Supplementary table S3).
Table 1
Characteristics of the included studies
Author and year (trial)
Country
Design
No. of patients (only DCIS)
Tumour characteristics (microcalcification, size)
Age (years), mean (range)
Intervention (MRI)
Balleyguier (IRCIS) 2019 [21]
France
RCT
MRI: 176
No MRI: 173
Microcalcification: MRI: 98%; No MRI: 99%
Mean size (mm): MRI: 10, no MRI: 13
MRI: 56 (31-80)
No MRI: 58 (39–80)
1.5 T systems mainly and 3 T systems in 2 centres
Peters (MONET) 2011 [19]
Netherlands
RCT
(subgroup analysis)
MRI: 39
No MRI: 41
Microcalcification: NR
Mean size (mm): NR
NR
3 T, dedicates phased-array bilateral breast coil
Turnbull (COMICE) 2010 [20]
UK
RCT
(subgroup analysis)
MRI: 43
No MRI: 48
Microcalcification: NR
Mean size (mm): NR
NR
1.5 T, dedicated breast-surface coils for signal reception, with a few scans done at 1.0 T
Allen 2010 [22]
USA
Retrospective cohort
MRI: 64
No MRI: 35
Microcalcification: NR
Mean size (mm): NR
MRI: 60.5 (40–83)
No MRI: 64.4 (41–89)
1.5 T using 8 channel breast-surface coil
Besharat 2018 [40]
Iran
One arm retrospective cohort
MRI: 5
Microcalcification: NR
Mean size (mm): NR
All patients (DCIS + invasive): 45.5
1.5 T
Davis 2012 [23]
USA
Retrospective cohort, comparing two different time periods
MRI: 154
No MRI: 64
Microcalcification: NR
Mean size (mm): NR
NR
1.5-T scanner with use of a dedicated prone eight-channel breast coil
Duygulu 2012 [41]
Turkey
One arm retrospective cohort
MRI: 18
Microcalcification: NR
Mean size (mm): NR
NR
1.5 T using a standard breast coil in the prone position
Hajaj 2017 [24]
UK
Retrospective cohort from one hospital, comparing two different time periods
MRI: 70
No MRI: 52
Microcalcification: NR
Size range (mm): MRI: 2 to 110; no MRI: 3 to 180
MRI: 63 (31–75)
No MRI: (56–82)
1.5-T scanner and a dedicated 8-channel breast coil
Hlubocky 2018 [38]
USA
One arm retrospective cohort in two sites
MRI: 288
Microcalcification: NR
Mean size: NR
NR
Initially with 1.5-T magnets; later, all were performed on 3.0 T
Itakura 2011 [11]
USA
Retrospective cohort
MRI: 38;
No MRI: 111
Microcalcification: NR
Size median (mm): MRI: 16, no MRI: 10
MRI: median: 50 (24–71)
No MRI: median: 59 (38–86)
NR
Keymeulen 2019 [33]
Netherlands
Retrospective cohort (population registries)
MRI: 2382
No MRI: 8033
Microcalcification: NR
Mean size: NR
MRI: 50–74 years (74%)
No MRI: 50–74 years (88%)
NR
Kropcho 2012 [25]
USA
Retrospective cohort from one site
MRI: 62;
No MRI: 98
Microcalcification: NR
Mean size (mm): MRI: 20.9, no MRI: 27.8
MRI: 55 (35–78)
No MRI: 62 (38–93)
1.5-T magnet using a dedicated four-channel in vivo breast coil
Lam 2019 [34]
USA
Retrospective cohort fromone hospital
MRI: 332
No MRI: 41
Microcalcification: NR
Mean size: NR
All patients: 55.5
NR
Lamb 2020 [36]
USA
Restrospective cohort from one hospital
MRI: 236
No MRI: 727
Microcalcification: all patients
Mean size: NR
MRI: 50.6 ± 8.8
No MRI: 60.2 ± 10
1.5 T or 3 T
Lee 2016 [37], 2020 [34]
Korea
One arm retrospective cohort in one site
MRI: 199
NR
All patients: 50.1 ± 9.4
1.5-T system with a dedicated 4-channel breast coil
Obdeijn 2013 [26]
Netherlands
Retrospective cohort, comparing two different time periods (subgroup analysis)
MRI: 11
No MRI: 27
Microcalcification: NR
Mean size (mm): NR
NR
1.5-T system with a dedicated double breast coil
Onega 2017 [27]
USA
Retrospective cohort (Breast Cancer Surveillance Consortium (BCSC))
MRI: 354
No MRI: 2083
Microcalcification: NR
Mean size (mm): NR
NR
NR
Pettit 2009 [39]
USA
One-arm retrospective cohort
(subgroup analysis)
MRI: 51
Microcalcification: NR
Mean size (mm): NR
NR
Siemens 1.5-T Sonata or Espree magnetic resonance imaging unit with dedicated breast coil
Pilewskie 2013 [12]
USA
Prospective cohort from the Lynn Sage Comprehensive Breast Center
MRI: 217;
No MRI: 135
Microcalcification: MRI: 75.8 %, no MRI: 93.8 %
Mean size cm (range): MRI: 2.1 (0.0, 10.0), no MRI: 1.7 (0.0, 9.0)
MRI: 53 (26–82)
No MRI: 60 (36–86)
NR
Pilewskie 2014 [28]
USA
Retrospective cohort from the Memorial Sloan-Kettering Cancer Center (MSKCC)
MRI: 596;
No MRI: 1723
Microcalcification: NR
Mean size (mm): NR
MRI: 54.0 (26-73)
No MRI: 53.5 (25–85)
NR
Shin 2012 [29]
Korea
Retrospective cohort
(subgroup analysis)
MRI: 62;
No MRI: 25
Microcalcification: NR
Mean size (mm): NR
NR
A 1.5-T imager with dedicated double-breast coil was used
So 2018 [30]
USA
Retrospective cohort from one site
MRI: 97;
No MRI: 79
Microcalcification: NR
Mean size ± SD: MRI: 1.5 ± 1.9, no MRI: 1.6 ± 2.6
MRI: 56.4
No MRI: 63.6
NR
Solin 2008 [42]
USA
Retrospective cohort from one site
MRI: 31
No MRI: 105
Microcalcification: NR
Mean size (mm): NR
NR
NR
Vapiwala 2017 [31]
USA
Retrospective cohort
(subgroup analysis)
MRI: 31;
No MRI: 104
Microcalcification: NR
Mean size (mm): NR
Microcalcification: NR
Mean size (mm): NR
NR
Vos 2015 [32]
Netherlands
Retrospective cohort, population-based
(subgroup analysis—high-grade DCIS)
MRI: 136
No MRI: 478
Microcalcification: NR
Mean size (mm): NR
NR
Dynamic contrast-enhanced MRI
Yoon 2020 [35]
Korea
Retrospective cohort from one hospital
MRI: 106
No MRI: 106
(post propensity matching)
Microcalcification: NR
Mean size (cm): 3.0 ± 2.4
All patients: 53.5 ± 10
(post propensity matching)
A 1.5-T or 3-T with dedicated double-breast coil was used
MRI magnetic resonance imaging, NR non-reported, MC microcalcifications, T tesla, DCIS ductal carcinoma in situ
Table 2
Summary of findings
https://static-content.springer.com/image/art%3A10.1007%2Fs00330-021-07873-2/MediaObjects/330_2021_7873_Tab2_HTML.png
aRisk of bias. The intervention (preoperative MRI) was not feasible to be blinded which led to high risk of performance bias, potentially influencing surgeons’ treatment plans
bRisk of bias. There was also a potential risk of imbalance of prognostic factors, due to the inclusion of results from a very small subgroup of participants in some RCTs
cIndirectness. Initial BCS was considered an intermediate outcome, as women could have received re-excision or a mastectomy depending on the presence of positive margins in the excised specimen
dRisk of bias. In some cohort studies, the comparison was between arms over different periods of time (secular bias)
eRisk of bias. Most observational studies reported unadjusted estimates
fInconsistency. Potentially important and unexplained heterogeneity across included studies
gOther considerations. Although there is an observed large effect, there is a very serious risk of bias concern and the estimate is imprecise; thus, we did not upgrade the certainty of evidence
hRisk of bias. The definition of positive margins was variable across clinical centres potentially introducing misclassification bias
iImprecision. The anticipated absolute effects associated to the intervention go from potential benefit to potential harm
jImprecision. There is imprecision of the anticipated absolute effects with the intervention but it is likely due to heterogeneity across studies
kOnly estimates from studies reporting adjusted ORs are included as the results were different from those unadjusted
lRisk of bias. Both studies reported adjusted estimates, although one study did not include tumour size as a pre-defined confounding variable in the analysis. Additionally, there was no information about the time the MRI exam was requested
mRisk of bias. Only patients who received breast-conserving surgery were included. There was potential selection bias as those with more aggressive treatments after MRI were not included. Potential over adjustment in the multivariate analysis as positive margins and number of excisions may be in the casual pathway to disease recurrence
nIndirectness. A proportion of patients had breast MRI performed after lumpectomy or at re-excision stage
oIndirectness. Serious indirectness as locoregional recurrence is considered a surrogate of disease-free survival
pImprecision. The absolute effect of the intervention ranged from significant benefit to significant harm
qRisk of bias. Decision to request breast MRI (after mammography and ultrasound) might be associated to the decision to change the initial plan, independent of MRI results
One RCT was purposely designed to evaluate the value of breast MRI in patients with biopsy-proven DCIS who were scheduled for BCS [21], with almost all lesions presenting microcalcifications and a mean size of 10 mm. Additionally, we included data from small subgroups of patients with DCIS from two RCTs, the MONET trial [19] which randomised patients with a non-palpable BI-RADS 3–5 lesion to receive routine medical care (mammography, ultrasound and lesion sampling) or additional MRI preceding biopsy and the multicentric COMICE trial [20] which recruited patients with biopsy-proven primary BC who had undergone triple assessment, and were scheduled for a wide local excision.
Of the 18 comparative cohorts included [11, 12, 2234], 16 were retrospective analyses of medical records or population registries [11, 12, 2227, 2936], three of them comparing different time periods (pre- and post-implementation of MRI) [23, 24, 26]. Three cohort studies had larger sample sizes, one used the Breast Cancer Surveillance Consortium registry data with 2437 patients with DCIS from 2010 to 2014 [27], another study included data of 2319 patients from a cancer centre in New York (USA) from 1997 to 2010 [28] and the last study used the Netherlands Cancer Registry (NCR) including 10,415 clinical records [33] (Table 1 and Supplementary table S3).
We also included five single MRI-arm cohorts [3741] and the MRI arm of three comparative cohorts and one RCT [12, 21, 26], where all surgical treatment changes due to the MRI findings were recorded. We did not find studies directly reporting the quality of life of patients receiving pre-operative breast MRI.

Initial BCS

Two RCTs, including a total of 429 patients, showed that MRI may result in little to no difference in initial BCS (RR 0.95; 95% CI 0.90 to 1.00) (Fig. 2a) (low certainty) [19, 21]. In 11 observational studies [11, 12, 2224, 27, 3236], the odds of BCS was lower but the evidence was very uncertain (OR 0.49; 95% CI 0.29 to 0.82) and only two cohort studies reported adjusted OR showing similar results (very low certainty) [32, 35] (Fig. 2b).

Proportion of positive margins (after undergoing BCS)

The results from 91 patients in one RCT suggested that MRI may increase the risk of positive margins in the excised lesion (RR of 1.58; 95% CI 0.88 to 2.92) (very low certainty) [20]. However, from observational studies, the pooled analysis including 9126 patients suggested that MRI pre-operative assessment may have little to no difference in this outcome (OR 0.91; 95% CI 0.85 to 1.21) [11, 22, 25, 26, 28, 32, 33, 35] (very low certainty). It is noteworthy that the definitions for positive margins across studies were heterogenous (i.e. < 1 mm [11, 27] or < 5 mm [29]) or not clearly described [36], even among the included centres of the only RCT reporting this outcome [20].

Re-operation rate (after undergoing BCS)

Two RCTs suggested no difference in the risk of having a re-operation after an initial BCS (RR 1.02; 95% CI 0.56 to 1.84), but the evidence was uncertain (very low certainty) [19, 21]. The pooled estimate from 12 observational studies suggested a decrease in the risk of re-operation (OR 0.72; 95% CI 0.50 to 1.04) (Fig. 3b) [11, 12, 2226, 29, 30, 3236].
The observational studies providing adjusted estimates had an inconsistent effect (OR 0.96; 95% CI 0.36 to 2.61) [30, 32, 35] compared to studies with unadjusted estimates (OR 0.66; 95% CI 0.45 to 0.99). Therefore, only those providing adjusted estimates were included in the evidence profile for observational studies (low certainty). One study reported the mean number of re-operations among those patients who received lumpectomy and showed no relevant differences (0.42 vs 0.58, p value = 0.31) [11].

Total mastectomy

Two RCTs, including 429 patients [19, 21], showed that MRI may result in little to no difference in total mastectomy surgeries (RR 0.91; 95% CI 0.65 to 1.27), equivalent to 21 fewer total mastectomies (95% CI 82 fewer to 63 more) performed per 1000 patients assessed (very low certainty) (Table 2). Eight observational studies suggested that MRI may increase the odds of total mastectomies (OR 1.58; 95% CI 1.00 to 2.48) (very low certainty) (Fig. 4b) [12, 22, 23, 25, 3235], with a larger but imprecise effect observed in studies providing adjusted results (aOR 1.74; 95% CI 0.53 to 5.68) [32, 35].

Disease-free survival (inferred from locoregional recurrence)

One study reported a subgroup of 135 patients with DCIS, over a follow-up of 10 years, and found no differences in disease-free survival between the use or not of breast MRI (4% vs 4%, p value = 0.25) [31]. Another study reported similar results at 8 years of follow-up for the rate of any local failure among 136 patients (6% vs 6%, p value = 0.58) [42]. Lamb et al reported similar rates of second BC events whether MRI was used or not (12.8% versus 11.5%, p = 0.68) [36].
The largest study, which included 2212 patients with a median follow-up of 4.9 years, showed, in an adjusted multivariate analysis (i.e. age, margin status, number of excisions), that MRI may increase the risk of local recurrence (aHR = 1.18; 95% CI 0.79 to 1.76) (very low certainty) [28].

MRI triggered treatment change

Eight cohorts [12, 26, 33, 35, 3741] and the intervention arm of one RCT [21] informed this outcome. Our pooled estimation showed that 17% (95% CI 12 to 24%) of the initial surgical decisions may change to a more extensive resection or mastectomy when breast MRI is used (low certainty) (Supplementary Figure 2). There was important heterogeneity, with the five studies with a larger sample size [12, 21, 3739] reporting between 9 and 18% and those with a smaller sample size reporting much higher proportions (39% [41] to 50% [26]).

Subgroup and sensitivity analysis

One RCT and 11 observational studies reported the age of participants which was similar across studies. We were not able to perform subgroup analysis on the extent of microcalcifications as most studies did not provide detailed data, but we included a post hoc analysis comparing those studies that reported the proportion of patients with microcalcification lesions with those that did not.
As described above (see “Re-operation rate (after undergoing BCS)”), we found different estimates among observational studies reporting adjusted versus crude estimates for re-operations but with overlapping confidence intervals (test for subgroup differences p value = 0.499). Other subgroup analyses, including publication year, did not show meaningful results (Supplementary table S4).

Risk of bias and certainty of the evidence

The included RCTs did not blind participants nor the clinical personnel leading to a potential risk of performance bias as treatment decisions might have been influenced by the knowledge of the allocation arm. The assessment of surgical outcomes is less likely to be biased due to unblinded assessment. However, the evaluation of positive margins in the surgical excised specimens might be at higher risk of bias as described elsewhere [43].
In addition, two of the three RCTs might be subject to an imbalance of prognosis factors, as we included results for small subgroups of the originally allocated patients [19, 20]. The probability of important imbalance for a single prognostic factor is higher in RCTs with less than 100 participants [44, 45].
For observational evidence, our main concern was risk of bias, as only three studies reported adjusted estimates [28, 30, 32]. Confounding variables (i.e. age, lesion size on mammography) might be associated to requesting breast MRI and to performing more aggressive surgical treatments. Most observational studies were retrospective and potentially subject to loss of follow-up or misrecorded data. Three studies compared two different time periods which may lead to bias related to different standards of care due to the progress in treatment quality over time [23, 24, 26].
For the assessment of the certainty of evidence, we rated down for risk of bias for all outcomes, for inconsistency in most estimates informed by observational studies, and for imprecision for locoregional recurrence, positive margins estimated from RCTs, and for re-operation estimates from both RCTs and observational evidence (Table 2 and Supplementary table S5).

Discussion

Main findings

Our review suggests that pre-operative breast MRI for DICS lesions may have no meaningful impact on surgical outcomes or on the risk of local recurrence. RCTs showed that MRI had little to no effect on initial BCS or total mastectomies, a finding that was consistent also with the results from observational studies. For re-operations, there is also uncertainty; the IRCIS trial designed to include only DCIS patients suggested a reduction but with confidence intervals including the opposite effect [21], while the MONET trial showed an increase in a small DCIS subgroup [19]. Among observational studies, Yoon et al, using propensity score matching, suggested a reduction in re-operations [35]. However, another two observational studies providing adjusted estimates did not find a benefit with MRI [30, 32].
The included RCTs had several limitations [46]. The IRCIS trial recruited patients eligible for BCS after mammography, ultrasound and percutaneous biopsy which might have biased mastectomy effect estimates against MRI. This study might also be underpowered as there were meaningful differences in the results between the intention to treat and per protocol analysis [21]. The MONET [19] and COMICE [20] trials randomised women with non-palpable or BIRADS 3–5 lesions respectively, while women with DCIS were only a small fraction of them. Moreover, these RCTs reported difficulties in the acquisition of MIR images at 3 T before randomisation [19], underwent MRI prior to biopsy which is not considered standard of care [19] and guided biopsies to verify MRI findings were not available in all cases [20].

Our results in the context of previous research

A systematic review including a lower number of studies than our review showed that preoperative breast MRI in patients with DCIS was not associated with an improvement in surgical outcomes [47]. Similar results were also observed in patients with invasive cancer [4851], with a systematic review showing that MRI increased mastectomy rates [50] and one individual person-data meta-analysis reporting that MRI does not reduce the risk of local recurrence or distant recurrence in these patients [51].
One potential explanation for the lack of benefit on surgical outcomes might be a limited specificity of MRI in patients with DCIS, and variable positive predictive value from 25 to 84% [52]. Previous data has shown that MRI, compared to histopathology, tends to overestimate the size of pure DCIS lesions and has moderate correlation with pathologically measured tumour size (r = 0.74) [53, 54]. This limitation could impact on having more aggressive treatments than needed, but not on the number of re-excisions. Furthermore, it should have only hampered older studies where biopsies were not performed in all new lesions identified by MRI and patients frequently went directly to reassessment of the surgical treatment plan.
An important factor is to ensure MRI images were adequately acquired. The ACR Breast MRI Accreditation Program began accrediting facilities in 2010 [55], requiring adequate magnetic field strength (1 T or higher) and gradient, bilateral breast coil enabling prone positioning and good fat suppression [55]. Older studies might be prone to unstandardised procedures as accreditation was not uniformly implemented. Currently, most facilities perform 1.5 T MRI, but the use of 3-T magnetic field has increased [56]. As some studies suggest, despite some technical limitations, 3 T could provide higher correlation with DCIS pathology size compared to 1.5 T, therefore obtaining higher image quality scores and better differential diagnosis of enhancing lesions [57]. Another study, including 20 DCIS lesions, found that size correlation between MRI images and pathology was higher with 3 T [58]. Most studies in our review used 1.5 T; thus, further studies are needed to assess the clinical impact of 3 T.
To provide an optimal accuracy, breast MRI should ideally provide high spatial and temporal resolution [59]; however, conventional MRI methods cannot deliver both and usually prioritise spatial resolution [59]. To solve this issue, recent technical advancements have focused on accelerating data acquisition. Morrison et al described a method that provided six-times faster effective temporal resolution and the same high spatial resolution of standard MRI [60]. Goto et al improved the temporal resolution with preservation of spatial resolution using ultra-fast DCE-MRI to differentiate malignant and benign lesions [61]. As new techniques are developed, the performance of MRI in the preoperative setting could improve.

Limitations and strengths

We included only English language articles although we included a larger number of studies than previous reviews. We could not explore the effect of MRI in some relevant patient subgroups as this data was not available. Our results are hampered by the low to very low certainty of the evidence found for the included outcomes.
Our review has several strengths. We included outcomes that were of interest for women, clinicians and policy makers when facing the decision of implementing or recommending preoperative MRI, and used rigorous methods including the GRADE approach to rate the certainty of the evidence.

Implications for practice and research

Patients and clinicians should be aware that although breast MRI for pre-operative assessment may improve the morphological description of DCIS lesions, we did not find evidence to suggest an improvement of surgical outcomes. In fact, observational evidence, although of very low certainty, may suggest that preoperative MRI could lead to more aggressive treatments. Also, MRI-guided biopsy to confirm new lesions or important expansions of the detected lesions is not always feasible or accessible. From a health system perspective, preoperative MRI implies greater resource use [62, 63], and given the uncertain potential benefits, the use of MRI has probably limited interest [64].
Given the uncertain evidence, there is a need for conducting well-powered RCTs assessing the role of preoperative MRI during treatment planning in patients with DCIS lesions incorporating new advancements in MRI imaging acquisition, securing the availability of experienced imaging readers and biopsy confirmation of new lesions.

Acknowledgements

The authors would like to sincerely thank all members of the Guidelines Development Group of the European Commission Initiative on Breast Cancer for their participation in the discussions generated by this systematic review which led to the different recommendations they developed in the European Guidelines on Breast Cancer Screening and diagnosis (https://​healthcare-quality.​jrc.​ec.​europa.​eu/​european-breast-cancer-guidelines).

Declarations

Guarantor

The scientific guarantor of this publication is Carlos Canelo-Aybar.

Conflict of interest

Elena Parmelli and Zuleika Saz-Parkinson are current employees of the Joint Research Centre, European Commission. Carlos Canelo-Aybar, Pablo Alonso-Coello, and David Rigau are employees of the Iberoamerican Cochrane Collaboration. Axel Gräwingholt, Annette Lebeau, Elsa Pérez Gómez and Miranda Langendam are members of the ECIBC Guidelines Development Group. Paolo Giorgi Rossi, as principal investigator of an independent study, funded by the Italian Ministry of Health, conducted negotiations with Hologic to obtain reagents at reduced price or for free; the reagents have not been used by Paolo Giorgi Rossi’s institutions; he is also member of the ECIBC Guidelines Development Group. Jessica Hanae Zafra-Tanaka and Alvaro Taype-Rondan were employees of the Institute for Health Technology Assessment and Research (IETSI) from the Peruvian Social Security at the time the study took place.

Statistics and biometry

No complex statistical methods were necessary for this paper.
Written informed consent was not required for this study because it is a systematic review.

Ethical approval

Institutional Review Board approval was not required because it is a systematic review.

Study subjects or cohorts overlap

The studies included in this systematic review were all already published elsewhere. Their references and characteristics are reported within the manuscript.

Methodology

• retrospective (systematic review of already published studies)
• performed at one institution
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Ferlay J, Ervik M, Lam F et al (2018) Global Cancer Observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today. Accessed 25 07 2019 Ferlay J, Ervik M, Lam F et al (2018) Global Cancer Observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://​gco.​iarc.​fr/​today. Accessed 25 07 2019
2.
Zurück zum Zitat Schmale I, Liu S, Rayhanabad J, Russell CA, Sener SF (2012) Ductal carcinoma in situ (DCIS) of the breast: perspectives on biology and controversies in current management. J Surg Oncol 105:212–220PubMedCrossRef Schmale I, Liu S, Rayhanabad J, Russell CA, Sener SF (2012) Ductal carcinoma in situ (DCIS) of the breast: perspectives on biology and controversies in current management. J Surg Oncol 105:212–220PubMedCrossRef
5.
Zurück zum Zitat Jansen CHP, Perera D, Wiethoff AJ et al (2017) Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS One 12:e0188292PubMedPubMedCentralCrossRef Jansen CHP, Perera D, Wiethoff AJ et al (2017) Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS One 12:e0188292PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Houssami N, Ciatto S, Macaskill P et al (2008) Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol 26:3248–3258PubMedCrossRef Houssami N, Ciatto S, Macaskill P et al (2008) Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol 26:3248–3258PubMedCrossRef
8.
Zurück zum Zitat Tajima CC, de Sousa LLC, Venys GL, Guatelli CS, Bitencourt AGV, Marques EF (2019) Magnetic resonance imaging of the breast: role in the evaluation of ductal carcinoma in situ. Radiol Bras 52(1):43–47 Tajima CC, de Sousa LLC, Venys GL, Guatelli CS, Bitencourt AGV, Marques EF (2019) Magnetic resonance imaging of the breast: role in the evaluation of ductal carcinoma in situ. Radiol Bras 52(1):43–47
9.
Zurück zum Zitat Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA (2014) Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol 5:61PubMedPubMedCentralCrossRef Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA (2014) Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol 5:61PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Albert ML, Gao Y, Moy L (2016) Role of breast MRI in patients with newly diagnosed breast cancer. Curr Breast Cancer Rep 8:80–89CrossRef Albert ML, Gao Y, Moy L (2016) Role of breast MRI in patients with newly diagnosed breast cancer. Curr Breast Cancer Rep 8:80–89CrossRef
11.
Zurück zum Zitat Itakura K, Lessing J, Sakata T et al (2011) The impact of preoperative magnetic resonance imaging on surgical treatment and outcomes for ductal carcinoma in situ. Clin Breast Cancer 11:33–38PubMedPubMedCentralCrossRef Itakura K, Lessing J, Sakata T et al (2011) The impact of preoperative magnetic resonance imaging on surgical treatment and outcomes for ductal carcinoma in situ. Clin Breast Cancer 11:33–38PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Pilewskie M, Kennedy C, Shappell C et al (2013) Effect of MRI on the management of ductal carcinoma in situ of the breast. Ann Surg Oncol 20:1522–1529PubMedCrossRef Pilewskie M, Kennedy C, Shappell C et al (2013) Effect of MRI on the management of ductal carcinoma in situ of the breast. Ann Surg Oncol 20:1522–1529PubMedCrossRef
13.
Zurück zum Zitat Schunemann HJ, Lerda D, Dimitrova N et al (2019) Methods for development of the European Commission Initiative on Breast Cancer Guidelines: recommendations in the era of guideline transparency. Ann Intern Med. https://doi.org/10.7326/M18-3445 Schunemann HJ, Lerda D, Dimitrova N et al (2019) Methods for development of the European Commission Initiative on Breast Cancer Guidelines: recommendations in the era of guideline transparency. Ann Intern Med. https://​doi.​org/​10.​7326/​M18-3445
14.
Zurück zum Zitat Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928PubMedPubMedCentralCrossRef Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919PubMedPubMedCentralCrossRef Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Balshem H, Helfand M, Schünemann HJ et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406PubMedCrossRef Balshem H, Helfand M, Schünemann HJ et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406PubMedCrossRef
18.
Zurück zum Zitat Schunemann HJ, Cuello C, Akl EA et al (2019) GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol 111:105–114PubMedCrossRef Schunemann HJ, Cuello C, Akl EA et al (2019) GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol 111:105–114PubMedCrossRef
19.
Zurück zum Zitat Peters N, Van Esser S, Van Den Bosch M et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET–randomised controlled trial. Eur J Cancer 47:879–886PubMedCrossRef Peters N, Van Esser S, Van Den Bosch M et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET–randomised controlled trial. Eur J Cancer 47:879–886PubMedCrossRef
20.
Zurück zum Zitat Turnbull LW, Brown SR, Olivier C et al (2010) Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). Health Technol Assess 14:1–182PubMedCrossRef Turnbull LW, Brown SR, Olivier C et al (2010) Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). Health Technol Assess 14:1–182PubMedCrossRef
21.
Zurück zum Zitat Balleyguier C, Dunant A, Ceugnart L et al (2019) Preoperative breast magnetic resonance imaging in women with local ductal carcinoma in situ to optimize surgical outcomes: results from the randomized phase III trial IRCIS. J Clin Oncol:18.00595 Balleyguier C, Dunant A, Ceugnart L et al (2019) Preoperative breast magnetic resonance imaging in women with local ductal carcinoma in situ to optimize surgical outcomes: results from the randomized phase III trial IRCIS. J Clin Oncol:18.00595
22.
Zurück zum Zitat Allen LR, Lago-Toro CE, Hughes JH et al (2010) Is there a role for MRI in the preoperative assessment of patients with DCIS? Ann Surg Oncol 17:2395–2400PubMedCrossRef Allen LR, Lago-Toro CE, Hughes JH et al (2010) Is there a role for MRI in the preoperative assessment of patients with DCIS? Ann Surg Oncol 17:2395–2400PubMedCrossRef
23.
Zurück zum Zitat Davis KL, Barth RJ, Gui J, Dann E, Eisenberg B, Rosenkranz K (2012) Use of MRI in preoperative planning for women with newly diagnosed DCIS: risk or benefit? Ann Surg Oncol 19:3270–3274PubMedCrossRef Davis KL, Barth RJ, Gui J, Dann E, Eisenberg B, Rosenkranz K (2012) Use of MRI in preoperative planning for women with newly diagnosed DCIS: risk or benefit? Ann Surg Oncol 19:3270–3274PubMedCrossRef
24.
Zurück zum Zitat Hajaj M, Karim A, Pascaline S, Noor L, Patel S, Dakka M (2017) Impact of MRI on high grade ductal carcinoma insitu (HG DCIS) management, are we using the full scope of MRI? Eur J Radiol 95:271–277PubMedCrossRef Hajaj M, Karim A, Pascaline S, Noor L, Patel S, Dakka M (2017) Impact of MRI on high grade ductal carcinoma insitu (HG DCIS) management, are we using the full scope of MRI? Eur J Radiol 95:271–277PubMedCrossRef
25.
Zurück zum Zitat Kropcho LC, Steen ST, Chung AP, Sim MS, Kirsch DL, Giuliano AE (2012) Preoperative breast MRI in the surgical treatment of ductal carcinoma in situ. Breast J 18:151–156PubMedCrossRef Kropcho LC, Steen ST, Chung AP, Sim MS, Kirsch DL, Giuliano AE (2012) Preoperative breast MRI in the surgical treatment of ductal carcinoma in situ. Breast J 18:151–156PubMedCrossRef
26.
Zurück zum Zitat Obdeijn I-M, Tilanus-Linthorst MM, Spronk S et al (2013) Preoperative breast MRI can reduce the rate of tumor-positive resection margins and reoperations in patients undergoing breast-conserving surgery. AJR Am J Roentgenol 200:304–310 Obdeijn I-M, Tilanus-Linthorst MM, Spronk S et al (2013) Preoperative breast MRI can reduce the rate of tumor-positive resection margins and reoperations in patients undergoing breast-conserving surgery. AJR Am J Roentgenol 200:304–310
27.
Zurück zum Zitat Onega T, Weiss JE, Goodrich ME et al (2017) Relationship between preoperative breast MRI and surgical treatment of non-metastatic breast cancer. J Surg Oncol 116:1008–1015PubMedPubMedCentralCrossRef Onega T, Weiss JE, Goodrich ME et al (2017) Relationship between preoperative breast MRI and surgical treatment of non-metastatic breast cancer. J Surg Oncol 116:1008–1015PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Pilewskie M, Olcese C, Eaton A et al (2014) Perioperative breast MRI is not associated with lower locoregional recurrence rates in DCIS patients treated with or without radiation. Ann Surg Oncol 21:1552–1560PubMedPubMedCentralCrossRef Pilewskie M, Olcese C, Eaton A et al (2014) Perioperative breast MRI is not associated with lower locoregional recurrence rates in DCIS patients treated with or without radiation. Ann Surg Oncol 21:1552–1560PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Shin H-C, Han W, Moon H-G et al (2012) Limited value and utility of breast MRI in patients undergoing breast-conserving cancer surgery. Ann Surg Oncol 19:2572–2579PubMedCrossRef Shin H-C, Han W, Moon H-G et al (2012) Limited value and utility of breast MRI in patients undergoing breast-conserving cancer surgery. Ann Surg Oncol 19:2572–2579PubMedCrossRef
30.
Zurück zum Zitat So A, De La Cruz LM, Williams AD et al (2018) The impact of preoperative magnetic resonance imaging and lumpectomy cavity shavings on re-excision rate in pure ductal carcinoma in situ—a single institution’s experience. J Surg Oncol 117:558–566PubMedCrossRef So A, De La Cruz LM, Williams AD et al (2018) The impact of preoperative magnetic resonance imaging and lumpectomy cavity shavings on re-excision rate in pure ductal carcinoma in situ—a single institution’s experience. J Surg Oncol 117:558–566PubMedCrossRef
31.
Zurück zum Zitat Vapiwala N, Hwang WT, Kushner CJ, Schnall MD, Freedman GM, Solin LJ (2017) No impact of breast magnetic resonance imaging on 15-year outcomes in patients with ductal carcinoma in situ or early-stage invasive breast cancer managed with breast conservation therapy. Cancer 123:1324–1332PubMedCrossRef Vapiwala N, Hwang WT, Kushner CJ, Schnall MD, Freedman GM, Solin LJ (2017) No impact of breast magnetic resonance imaging on 15-year outcomes in patients with ductal carcinoma in situ or early-stage invasive breast cancer managed with breast conservation therapy. Cancer 123:1324–1332PubMedCrossRef
32.
Zurück zum Zitat Vos E, Voogd AC, Verhoef C, Siesling S, Obdeijn I-M, Koppert LB (2015) Benefits of preoperative MRI in breast cancer surgery studied in a large population-based cancer registry. Br J Surg 102:1649–1657PubMedCrossRef Vos E, Voogd AC, Verhoef C, Siesling S, Obdeijn I-M, Koppert LB (2015) Benefits of preoperative MRI in breast cancer surgery studied in a large population-based cancer registry. Br J Surg 102:1649–1657PubMedCrossRef
33.
Zurück zum Zitat Keymeulen K, Geurts SME, Lobbes MBI et al (2019) Population-based study of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 106:1488–1494PubMedPubMedCentralCrossRef Keymeulen K, Geurts SME, Lobbes MBI et al (2019) Population-based study of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 106:1488–1494PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Lam DL, Smith J, Partridge SC et al (2020) The impact of preoperative breast MRI on surgical management of women with newly diagnosed ductal carcinoma in situ. Acad Radiol 27:478–486PubMedCrossRef Lam DL, Smith J, Partridge SC et al (2020) The impact of preoperative breast MRI on surgical management of women with newly diagnosed ductal carcinoma in situ. Acad Radiol 27:478–486PubMedCrossRef
35.
Zurück zum Zitat Yoon GY, Choi WJ, Kim HH, Cha JH, Shin HJ, Chae EY (2020) Surgical outcomes for ductal carcinoma in situ: impact of preoperative MRI. Radiology 295:296–303PubMedCrossRef Yoon GY, Choi WJ, Kim HH, Cha JH, Shin HJ, Chae EY (2020) Surgical outcomes for ductal carcinoma in situ: impact of preoperative MRI. Radiology 295:296–303PubMedCrossRef
36.
Zurück zum Zitat Lamb LR, Oseni TO, Lehman CD, Bahl M (2020) Pre-operative MRI in patients with ductal carcinoma in situ: is MRI useful for identifying additional disease? Eur J Radiol 129:109130PubMedCrossRef Lamb LR, Oseni TO, Lehman CD, Bahl M (2020) Pre-operative MRI in patients with ductal carcinoma in situ: is MRI useful for identifying additional disease? Eur J Radiol 129:109130PubMedCrossRef
37.
Zurück zum Zitat Lee J, Jung JH, Kim WW et al (2016) The role of preoperative breast magnetic resonance (MR) imaging for surgical decision in patients with triple-negative breast cancer. J Surg Oncol 113:12–16PubMedCrossRef Lee J, Jung JH, Kim WW et al (2016) The role of preoperative breast magnetic resonance (MR) imaging for surgical decision in patients with triple-negative breast cancer. J Surg Oncol 113:12–16PubMedCrossRef
38.
Zurück zum Zitat Hlubocky J, Bhavnagri S, Swinford A, Mitri C, Rebner M, Pai V (2018) Does the use of pretreatment MRI change the management of patients with newly diagnosed breast cancer? Breast J 24:309–313PubMedCrossRef Hlubocky J, Bhavnagri S, Swinford A, Mitri C, Rebner M, Pai V (2018) Does the use of pretreatment MRI change the management of patients with newly diagnosed breast cancer? Breast J 24:309–313PubMedCrossRef
39.
Zurück zum Zitat Pettit K, Swatske ME, Gao F et al (2009) The impact of breast MRI on surgical decision-making: are patients at risk for mastectomy? J Surg Oncol 100:553–558PubMedPubMedCentralCrossRef Pettit K, Swatske ME, Gao F et al (2009) The impact of breast MRI on surgical decision-making: are patients at risk for mastectomy? J Surg Oncol 100:553–558PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Besharat Sara KM, Azadeh J, Nasser M (2018) Influence of preoperative magnetic resonance imaging in surgical planning for breast cancer. Int J Cancer Manag 11:e81459 Besharat Sara KM, Azadeh J, Nasser M (2018) Influence of preoperative magnetic resonance imaging in surgical planning for breast cancer. Int J Cancer Manag 11:e81459
41.
Zurück zum Zitat Duygulu G, Oktay A, Bilgen IG, Kapkaç M, Zekioglu O (2012) The role of breast MRI in planning the surgical treatment of breast cancer. Diagn Interv Radiol 18:460PubMed Duygulu G, Oktay A, Bilgen IG, Kapkaç M, Zekioglu O (2012) The role of breast MRI in planning the surgical treatment of breast cancer. Diagn Interv Radiol 18:460PubMed
42.
Zurück zum Zitat Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD (2008) Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26:386–391PubMedCrossRef Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD (2008) Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26:386–391PubMedCrossRef
43.
Zurück zum Zitat Skov BG, Braendstrup O, Hirsch FR, Lauritzen AF, Nielsen HW, Skov T (1994) Are pathologists biased by clinical information?: a blinded cross-over study of the histopathological diagnosis of mesothelial tumours versus pulmonary adenocarcinoma. Lung Cancer 11:365–372PubMedCrossRef Skov BG, Braendstrup O, Hirsch FR, Lauritzen AF, Nielsen HW, Skov T (1994) Are pathologists biased by clinical information?: a blinded cross-over study of the histopathological diagnosis of mesothelial tumours versus pulmonary adenocarcinoma. Lung Cancer 11:365–372PubMedCrossRef
44.
Zurück zum Zitat Cui L, Hung HM, Wang SJ, Tsong Y (2002) Issues related to subgroup analysis in clinical trials. J Biopharm Stat 12:347–358PubMedCrossRef Cui L, Hung HM, Wang SJ, Tsong Y (2002) Issues related to subgroup analysis in clinical trials. J Biopharm Stat 12:347–358PubMedCrossRef
45.
Zurück zum Zitat Chu R, Walter SD, Guyatt G et al (2012) Assessment and implication of prognostic imbalance in randomized controlled trials with a binary outcome--a simulation study. PLoS One 7:e36677PubMedPubMedCentralCrossRef Chu R, Walter SD, Guyatt G et al (2012) Assessment and implication of prognostic imbalance in randomized controlled trials with a binary outcome--a simulation study. PLoS One 7:e36677PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Pinker K (2020) Preoperative MRI improves surgical planning and outcomes for ductal carcinoma in situ. Radiology 295:304–306PubMedCrossRef Pinker K (2020) Preoperative MRI improves surgical planning and outcomes for ductal carcinoma in situ. Radiology 295:304–306PubMedCrossRef
47.
Zurück zum Zitat Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N (2015) Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 102:883–893PubMedCrossRef Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N (2015) Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 102:883–893PubMedCrossRef
48.
Zurück zum Zitat Parsyan A, Alqahtani A, Mesurolle B, Meterissian S (2013) Impact of preoperative breast MRI on surgical decision making and clinical outcomes: a systematic review. World J Surg 37:2134–2139PubMedCrossRef Parsyan A, Alqahtani A, Mesurolle B, Meterissian S (2013) Impact of preoperative breast MRI on surgical decision making and clinical outcomes: a systematic review. World J Surg 37:2134–2139PubMedCrossRef
49.
Zurück zum Zitat Houssami N, Turner R, Morrow M (2013) Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg 257:249–255PubMedCrossRef Houssami N, Turner R, Morrow M (2013) Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg 257:249–255PubMedCrossRef
50.
Zurück zum Zitat Houssami N, Turner RM, Morrow M (2017) Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat 165:273–283PubMedPubMedCentralCrossRef Houssami N, Turner RM, Morrow M (2017) Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat 165:273–283PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Houssami N, Turner R, Macaskill P et al (2014) An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol 32:392–401PubMedCrossRef Houssami N, Turner R, Macaskill P et al (2014) An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol 32:392–401PubMedCrossRef
52.
Zurück zum Zitat Brem RF, Fishman M, Rapelyea JA (2007) Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: a comparative study. Acad Radiol 14:945–950PubMedCrossRef Brem RF, Fishman M, Rapelyea JA (2007) Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: a comparative study. Acad Radiol 14:945–950PubMedCrossRef
53.
Zurück zum Zitat Baur A, Bahrs SD, Speck S et al (2013) Breast MRI of pure ductal carcinoma in situ: sensitivity of diagnosis and influence of lesion characteristics. Eur J Radiol 82:1731–1737PubMedCrossRef Baur A, Bahrs SD, Speck S et al (2013) Breast MRI of pure ductal carcinoma in situ: sensitivity of diagnosis and influence of lesion characteristics. Eur J Radiol 82:1731–1737PubMedCrossRef
54.
Zurück zum Zitat Schouten van der Velden AP, Schlooz-Vries MS, Boetes C, Wobbes T (2009) Magnetic resonance imaging of ductal carcinoma in situ: what is its clinical application? A review. Am J Surg 198:262–269PubMedCrossRef Schouten van der Velden AP, Schlooz-Vries MS, Boetes C, Wobbes T (2009) Magnetic resonance imaging of ductal carcinoma in situ: what is its clinical application? A review. Am J Surg 198:262–269PubMedCrossRef
56.
Zurück zum Zitat Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290PubMedCrossRef Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290PubMedCrossRef
57.
Zurück zum Zitat Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239:666–676PubMedCrossRef Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239:666–676PubMedCrossRef
58.
Zurück zum Zitat Rahbar H, DeMartini WB, Lee AY, Partridge SC, Peacock S, Lehman CD (2015) Accuracy of 3 T versus 1.5 T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS. Eur J Radiol 84:611–616PubMedPubMedCentralCrossRef Rahbar H, DeMartini WB, Lee AY, Partridge SC, Peacock S, Lehman CD (2015) Accuracy of 3 T versus 1.5 T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS. Eur J Radiol 84:611–616PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378PubMedCrossRef Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378PubMedCrossRef
60.
Zurück zum Zitat Morrison CK, Henze Bancroft LC, DeMartini WB et al (2017) Novel high spatiotemporal resolution versus standard-of-care dynamic contrast-enhanced breast MRI: Comparison of Image Quality. Invest Radiol 52:198–205PubMedPubMedCentralCrossRef Morrison CK, Henze Bancroft LC, DeMartini WB et al (2017) Novel high spatiotemporal resolution versus standard-of-care dynamic contrast-enhanced breast MRI: Comparison of Image Quality. Invest Radiol 52:198–205PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Goto M, Sakai K, Yokota H et al (2019) Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions. Eur Radiol 29:1164–1174PubMedCrossRef Goto M, Sakai K, Yokota H et al (2019) Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions. Eur Radiol 29:1164–1174PubMedCrossRef
63.
Zurück zum Zitat Onega T, Tosteson AN, Weiss J et al (2016) Costs of diagnostic and preoperative workup with and without breast MRI in older women with a breast cancer diagnosis. BMC Health Serv Res 16:76PubMedPubMedCentralCrossRef Onega T, Tosteson AN, Weiss J et al (2016) Costs of diagnostic and preoperative workup with and without breast MRI in older women with a breast cancer diagnosis. BMC Health Serv Res 16:76PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Kandel M, Dunant A, Balleyguier C, Bonastre J (2020) Cost-effectiveness of preoperative magnetic resonance imaging to optimize surgery in ductal carcinoma in situ of the breast. Eur J Radiol 129:109058PubMedCrossRef Kandel M, Dunant A, Balleyguier C, Bonastre J (2020) Cost-effectiveness of preoperative magnetic resonance imaging to optimize surgery in ductal carcinoma in situ of the breast. Eur J Radiol 129:109058PubMedCrossRef
Metadaten
Titel
Preoperative breast magnetic resonance imaging in patients with ductal carcinoma in situ: a systematic review for the European Commission Initiative on Breast Cancer (ECIBC)
verfasst von
Carlos Canelo-Aybar
Alvaro Taype-Rondan
Jessica Hanae Zafra-Tanaka
David Rigau
Axel Graewingholt
Annette Lebeau
Elsa Pérez Gómez
Paolo Giorgi Rossi
Miranda Langendam
Margarita Posso
Elena Parmelli
Zuleika Saz-Parkinson
Pablo Alonso-Coello
Publikationsdatum
30.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-07873-2

Weitere Artikel der Ausgabe 8/2021

European Radiology 8/2021 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.