Skip to main content
Erschienen in: Translational Neurodegeneration 1/2023

Open Access 01.12.2023 | Review

Role of dopamine in the pathophysiology of Parkinson’s disease

verfasst von: Zhi Dong Zhou, Ling Xiao Yi, Dennis Qing Wang, Tit Meng Lim, Eng King Tan

Erschienen in: Translational Neurodegeneration | Ausgabe 1/2023

Abstract

A pathological feature of Parkinson’s disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Abkürzungen
α-MT
α-Methyltyrosine
α-syn
α-Synuclein
ALDH
Aldehyde dehydrogenase
ALR/AR
Aldehyde/aldose reductase
AM
Aminochrome
DA
Dopamine
DAQs
DA quinones
DAT
DA transporter
DOQ
DA-o-quinone
L-DOPA
Levodopa
DOPAL
3,4-Dihydroxyphenylacetaldehyde
DPQ
DOPAL quinone
GBA1
Glucocerebrosidase-1
Gly
Glycine
GSH
Glutathione
HSP27
Heat shock protein 27
IκBα
NF-κB inhibitor α
iPSC
Induced pluripotent stem cell
LRRK2
Leucine-rich repeat kinase 2
Lys
Lysine
L-Cys
l-cysteine
MA
Michael-addition
MAO
Monoamine oxidases
MPP+
1-Methyl-4-phenylpyridinium
MPTP
1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine
MTP
Mitochondrial transition pore
NAC
N-acetylcysteine
NF-κB
Nuclear factor-κB
PD
Parkinson’s disease
PINK1
PTEN-induced kinase 1
ROC
Ras-of-complex proteins
ROS
Reactive oxygen species
SB
Schiff-base
Ser
Serine
SN
Substantia nigra
Thr
Threonine
Tyr
Tyrosine
UPS
Ubiquitin–proteasome system
VMAT2
Vesicular monoamine transporter 2

Introduction

Parkinson’s disease (PD) is a common neurodegenerative movement disorder that affects 1% of the population above 60 years. PD is characterized by the progressive loss of dopaminergic neurons and the formation of Lewy bodies in the affected brain areas [1, 2]. Dopamine (DA), a brain hormone with a chemical formula C8H11NO2, is synthesized by substantia nigra (SN) dopaminergic neurons which have axon projections in the striatum [3]. As a brain neurotransmitter, DA is released from the presynaptic membrane to the synaptic cleft, where it binds and activates DA receptors on the postsynaptic membrane [3]. Progressive degeneration of dopaminergic neurons reduces DA content in the SN and striatum and triggers the onset of PD clinical symptoms such as tremor, postural instability, bradykinesia and muscle rigidity [4]. PD is an incurable neurodegenerative disease and the levodopa (L-DOPA) therapy can only alleviate PD symptoms, without any therapeutic improvements on the progression of DA neuronal degeneration [5].
The exact PD pathogenesis remains to be clarified. However, evidence shows that oxidation of endogenous DA can induce specific oxidative stress in dopaminergic neurons [68]. DA oxidation can occur spontaneously or be mediated by enzymes or metal ions, producing deleterious DA oxidative by-products [5, 9]. Many reactive DA metabolites are toxic to dopaminergic neurons, including reactive oxygen species (ROS), DA quinones (DAQs) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) [5, 9]. ROS can induce oxidative stress, whereby highly reactive DAQs and DOPAL can covalently conjugate with cysteine, lysine and tyrosine residues of proteins, leading to misfolding, cross-linking, functional inactivation and aggregation of affected proteins [1012]. DA impairs the functions of mitochondria, ubiquitin–proteasome system (UPS), lysosome and autophagy, resulting in DA neuron vulnerability [1012]. DA and its derivatives are involved in the toxity of PD-related neurotoxins, such as rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and iron species [13, 14]. DA is also involved in the PD pathogenesis associated with genetic factors, including SNCA (encoding α-synuclein [α-syn]), LRRK2 (leucine-rich repeat kinase 2), PINK1 (PTEN-induced kinase 1), Parkin, DJ-1 and GBA1 (glucocerebrosidase-1 [GCase]), contributing to DA neuronal degeneration [1519]. In this review, we briefly summarize the role of DA metabolic pathways in PD pathophysiology and discuss therapeutic strategies to protect dopaminergic neurons and mitigate the complications associated with DA synthesis, transportation, storage and metabolisms.

DA metabolic pathways

DA is the neurotransmitter for signal transduction in dopaminergic neurons. It is formed as an intermediate during the formation of norepinephrine and epinephrine [20]. DA is synthesized by two steps in catecholamine neurons. First, the amino acid tyrosine is converted to L-DOPA by tyrosine hydroxylase (TH). Subsequently, L-DOPA is decarboxylated to DA by aromatic amino acid decarboxylase [21]. In the resting state, the synthesized DA is transported into and stored in vesicles by vesicular monoamine transporter 2 (VMAT2) in the cytosol of dopaminergic neurons, facilitated by a vesicular ATPase-dependent H+ gradient. VMAT2, when present on synaptic vesicles, acts as a stoichiometric antiporter under acidic circumstances, transporting two H+ ions out and one monoamine molecule into vesicles [22]. Deficiency of VMAT2 elevates monoamine turnover, evidenced by reduced levels of DA, norepinephrine, 5-hydroxytryptamine and histamine in catecholaminergic neurons, leading to up-regulation of amine-synthesizing enzymes [23]. Under neuronal activation, DA is released into the synaptic cleft for signal transduction. The released DA can be taken up and degraded by neighboring astrocytes and microglia or absorbed back into the vesicles of the presynaptic neurons via DA transporters (DATs) for re-use. DA in the cytosol is unstable and will undergo oxidation [24].
DA can undergo auto-oxidation, especially under basic condition, to generate small-molecule ROS and highly reactive DAQs [6]. DA oxidation can be facilitated by enzymatic catalysis (such as tyrosinase) or mediated by transition metal ions (iron, copper and manganese ions) [5]. Briefly, the oxidation of DA initiates from the desquamation of two protons and electrons from the hydroxyl groups of DA to form DA-o-quinone (DOQ), a highly reactive, undetectable species with a very short lifespan, and generates ROS [5]. DOQ can be reversed back to DA by ambient reductants or further oxidized to form reactive aminochrome (AM), a kind of cyclized DAQ, via internal cyclization of DOQ under insufficient ambient reductive forces [5]. AM is more stable than DOQ and can be detected, monitored and characterized. DOQ and AM can react and conjugate with many biomolecules, including protein residues cysteine and tyrosine with sulfhydryl and hydroxyl groups, whereas polymerization of AM will form neuromelanin (NM), an insoluble granular pigment in SN [5, 25, 26].
NM has been reported to prevent the neurotoxicity of DAQs and is considered as an anti-oxidative agent since it directly binds and inactivates radical species under normal conditions [27]. Interestingly, NM also generates free radical species under oxidative stress conditions [28]. Another study suggests that NM may be involved in α-syn-associated DA neuronal damage [29]. In NM-producing rats that show PD pathology when NM accumulates above a specific pathogenic threshold, the time-dependent accumulation of NM and degeneration of dopaminergic neurons under overexpression of tyrosinase, were significantly alleviated by viral vector-mediated overexpression of VMAT2 [30]. Furthermore, the reduced NM generation was associated with decreased formation of Lewy body-like inclusions and improved survival of dopaminergic neurons and motor functions in rats [30]. These findings highlight the potential pathological roles of NM accumulation in PD, suggesting therapeutic potentials of inhibiting time-dependent NM accumulation for PD.
Besides, the cytosol DA is catalyzed by monoamine oxidases (MAO) to produce DOPAL, a reactive and toxic DA metabolite, and ROS [9]. DOPAL can be monitored, with physiological concentrations around 2–3 μM in dopaminergic neurons in the SN. DOPAL concentrations higher than 6 μM are toxic to many cell lines [31]. As a quite electrophilic molecule, DOPAL can conjugate with lysine and cysteine residues to induce toxicity. However, DOPAL can be detoxified by NAD(P)+-dependent aldehyde dehydrogenase (ALDH) or reduced by aldehyde/aldose reductase (ALR/AR) to form the inactive 3,4-dihydroxyphenylethanol, or further oxidized to non-toxic 3,4-dihydroxyphenylacetic acid where the aldehyde moiety is replaced by a carboxyl group [32]. Alternatively, DA released into the synaptic cleft can be absorbed into the surrounding glial cells, in which DA can be catalyzed by catechol-o-methyltransferase and MAO to form non-toxic 3-methoxytyramine and finally homovanillic acid [5, 33]. The detailed DA metabolic pathways are illustrated in Fig. 1.

The pathogenic roles of DA in PD

DA-relevant toxicity in PD pathogenesis has been demonstrated in multiple in vitro and in vivo PD models [34, 35]. Direct injection of DA (up to 1 μmol) into the rat striatum led to the loss of dopaminergic nerve terminals and the formation of cysteinyl adducts of DA in a DA-dose-dependent manner, and this was alleviated by co-administration of glutathione (GSH) or ascorbate [3638]. Injection of AM, a cyclized DAQ, into the SN of rats induced dopaminergic neuronal degeneration and motor impairment [39, 40]. Injection of DOPAL into the rat SN region resulted in DA neuronal loss [41]. Furthermore, deregulation of endogenous DA synthesis, storage, transportation and metabolism by pharmacological and genetic approaches can lead to deleterious effects on dopaminergic neurons. Both in vitro and in vivo studies showed that overexpression of TH, a rate-limiting enzyme in dopamine biosynthesis, induces degeneration of dopaminergic neurons [42, 43]. The Tet-on-induced TH overexpression in human midbrain-like organoids derived from the induced pluripotent stem cells (iPSCs) has also been shown to induce degeneration of dopaminergic neurons [44]. Consistently, RNAi knockdown of TH significantly alleviates the rotenone- and mutant α-syn-induced degeneration of dopaminergic neurons in a Drosophila PD model [35]. Knockdown of VMAT2 in mice disturbs DA vesicle storage and leads to mild and progressive DA neurodegeneration, accompanied by elevated levels of cysteinyl-DAQs adducts, suggesting enhanced DA oxidation and DAQ toxicity [45]. Furthermore, VMAT2-knockout mice are sensitive to the neurotoxic drug methamphetamine [46, 47], which promotes DA redistribution from synaptic storage vesicles into the cytosol [48, 49]. However, VMAT2 overexpression protects against the methamphetamine-induced toxicity to dopaminergic neurons [50]. The degeneration of dopaminergic neurons can be induced by overexpression of DATs, which enhance DA re-uptake to increase cytosolic DA levels in PD models in vivo [51, 52]. Furthermore, disturbances of the ALDH-catalyzed detoxification of DOPAL, a reactive DA metabolite, can be pathogenic. Mice lacking both cytosolic and mitochondrial Aldh, two key enzymes to detoxify DOPAL in the brain, exhibit degeneration of dopaminergic neurons in the SN and development of age-dependent parkinsonian phenotypes [53]. A clinical study involving 360 PD patients and 754 normal controls demonstrated a positive association between environmental exposure to benomyl, a potent ALDH inhibitor, and the increased risk of PD [54].
DA exerts toxicity via its deleterious metabolic by-products, including reactive ROS, DAQs and DOPAL. ROS generated from DA oxidation can aggravate oxidative stress, which has been evidenced by postmortem studies reporting that oxidative modifications have significant and comprehensive impacts on nucleic acids, lipids, proteins and GSH in PD patient brains [55]. However, DAQs, rather than small-molecule ROS, are more significant pathological factors in degeneration of dopaminergic neurons [12]. The DA-derived DAQs can irreversibly conjugate to the sulfhydryl groups of cysteine residues via Michael-addition (MA) reaction, leading to protein misfolding and loss of function [56, 57]. Our recent findings suggest, for the first time, that DAQs can also conjugate with hydroxyl groups of tyrosine and serine, especially hydroxyl groups in the phenol ring of tyrosine [26]. In the study, we synthesized three similar peptide fragments with 30 amino acids without L-cysteine but containing five serine residues (peptide S, HGKKQDNRSQESGEDGDDREGSGKSNESQD), five tyrosine residues (peptide Y, HGKKQDNRYQEYGEDGDDREGYGKYNEYQD) or glycine residues (peptide G, HGKKQDNRGQEGGEDGDDREGGGKGNEGQD) [26]. The peptides were incubated with DA in the presence or absence of tyrosinase. After incubation, the conjugation of DAQ to the peptides was  monitored by nitroblue tetrazolium staining plus polyacrylamide gel electrophoresis analysis [26]. We found that the peptide G with glycine residues could not react with DAQs, while the peptide S with five serine residues had weak capabilities to conjugate with DAQs [26]. However, the peptide Y with five tyrosine residues could effectively conjugate with DAQs [26]. These results provide direct evidence that DAQs can conjugate with the hydroxyl groups of protein residues, especially the tyrosine residue with a hydroxyl group in a phenol ring. Furthermore, the hydroxyl groups from tea polyphenols can competitively conjugate with DAQs to protect against DAQ-induced protein modifications, further supporting the reactions between DAQs and phenolic hydroxyl groups of protein residues [26]. The peptide G has three lysine residues; however, no conjugations of DAQs were identified. Therefore, Schiff-base (SB) reactions between DAQs and peptides can be excluded. The conjugations between DAQs and tyrosine residues occur via the MA reaction, similar to reactions between DAQs and cysteine.
The DAQ-modified proteins are involved in the DA-induced toxicity to human dopaminergic neurons [58]. DAQs can conjugate with αB-crystallin and heat shock protein 27 (HSP27), two small heat-shock chaperone proteins, to promote the cross-linking of αB-crystallin and HSP27 and inhibit their chaperone functions [59]. Moreover, DAQs can inhibit mitochondrial, lysosomal, autophagy and UPS functions in dopaminergic neurons [12, 6062]. DAQs can irreversibly inhibit the activities of proteasomes, whereas small-molecule ROS only induce reversible proteasome inhibition [11]. In a previous study using SH-SY5Y cells and isolated mouse liver and rat brain mitochondria, DAQ treatment altered the morphology of mitochondria, induced mitochondrial membrane depolarization and opening of the mitochondrial transition pore (MTP), and inhibited mitochondrial ATP synthesis [63]. In another recent study, DA oxidation was identified to mediate the mitochondrial and lysosomal dysfunction in PD patients [10]. The enhanced mitochondrial oxidative stress leads to DA oxidation with generation of DAQs, conjugation of DAQs with GBA1, inhibition of GBA1 enzymatic activity, lysosomal dysfunction, and accumulation of deleterious α-syn protein [10]. DAQs can inhibit autophagy via reactions with α- and β-tubulin, as α- and β-tubulin mediate microtubule aggregation for the fusion of autophagy vacuoles with lysosomes [62]. Furthermore, DAQs can directly conjugate with α-syn to induce the formation of toxic α-syn protofibrils, leading to inactivation of the chaperone-mediated autophagy [62].
DOPAL is also reactive and can be an endogenous neurotoxin due to the presence of its both aldehyde and catechol moieties [9]. The neurotoxicity of DOPAL has been reported in various studies both in vitro and in vivo [31, 41]. DOPAL can conjugate through its aldehyde moiety with lysine residues of proteins via the SB reaction [64]. Furthermore, the oxidation of the catechol group of DOPAL can further generate DOPAL-quinone (DPQ), which can conjugate with the sulfhydryl group of cysteine residues via MA reaction [65]. In principle, DPQ, as one of DAQs, should be able to react with the hydroxyl group of tyrosine via MA reaction. DOPAL is involved in multiple mechanisms of DA neurotoxicity [9]. The high reactivity of aldehyde and catechol moieties of DOPAL results in protein cross-linking and aggregation, aggravated proteostatic stress and neurodegeneration [9, 66]. DOPAL has been shown to conjugate with multiple proteins (Table 1) [64, 67], including α-syn. DOPAL conjugates with lysine residues of α-syn forming SB and MA adducts, leading to the formation of α-syn oligomers, aggravating α-syn toxicity, and this can be abrogated by a lysine-blocking strategy [68]. The DOPAL-modified α-syn protein can accumulate in the endo-lysosomal pathway, leading to impaired proteostasis and neurodegeneration of dopaminergic neurons both in vitro and in vivo [69]. The lysine residues undergo many post-translational modifications, including ubiquitination, SUMOylation and acetylation, which are vital for cell survival and proliferation [70]. The conjugation of DOPAL to lysine residues interferes with many cellular events and down-regulates cell viability, as evidenced by ubiquitin oligomerization, accumulation of ubiquitinated proteins and impairment of UPS functions upon DOPAL challenges [71]. Besides, the DOPAL-induced oxidative stress enhancement, enzymatic inhibition, mitochondrial impairment and disturbances of cellular proliferation and death signaling pathways, cooperatively contribute to the DA-relevant toxicity in PD pathogenesis [9]. The complicated conjugations of DAQs and DOPAL with cysteine, tyrosine and lysine residues that result in protein modifications and cross-linking are illustrated in Fig. 2. Proteins modified by DAQs and DOPAL are summarized in Table 1.
Table 1
Proteins modified by DAQs and DOPAL
Proteins or peptides
Modified residues
DA oxidation products
References
Apoferritin protein
DA
[72]
α-Syn
Lysine
DOPAL
[68, 69, 7375]
α-Syn
DA
[76, 77]
α-Syn
DPQ
[78]
α-Syn
Lysine
DPQ
[71]
α-Syn
DAQs
[79, 80]
GCase
Cysteine
DAQs
[81]
Parkin
Cysteine
DA
[82]
DJ-1
Cysteine106 and Cysteine53
DAQs
[83]
DJ-1
Cysteine
DAQs
[57, 84]
Chaperonin
Cysteine
DAQs
[57]
Ubiquinol cytochrome c reductase core protein 1
Cysteine
DAQs
[57]
Mortalin
Cysteine
DAQs
[57]
Mitofilin
Cysteine
DAQs
[57]
Mitochondrial creatine kinase
Cysteine
DAQs
[57]
Ubiquitin carboxy-terminal hydrolase L1
Cysteine
DAQs
[57]
Glutathione peroxidase 4
DAQs
[85]
Actin
DAQs
[86]
α-, β-tubulin
DAQs
[86]
BSA
Cysteine
DAQs
[87, 88]
BSA
DOPAL
[67]
GAPDH
Cysteine
DOPAL
[64, 89]
HSP27
Lysine
DAQs
[59]
αB-crystallin
Lysine
DAQs
[59]
β-lactoglobulin
Cysteine
DAQs
[87]
Synthesized peptide
Tyrosine/Serine
DAQs
[26]
Myoglobin
Cysteine/Histidine
DAQs
[90]
L-lactate dehydrogenase
DAQs
[91]
Malate dehydrogenase
DAQs
[91]
Superoxide dismutase 2
Cysteine
DAQs
[92]
TH
Cysteine
DAQs
[93, 94]
TH
DOPAL
[95]
VMAT2
DPQ
[71]
GBA
DPQ
[71]
Ubiquitin
[71]
L-aromatic-amino-acid decarboxylase
DPQ
[71]
Mitochondrial dysfunction, including systemic deficiency of the electron transport chain complex I, is a well-established player in the pathogenesis of both sporadic and familial PD [9698]. The mitochondrial toxins rotenone and 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), two PD-associated inhibitors of mitochondrial complex I, can induce PD-like phenotypes both in vitro and in vivo [13]. MPTP can cross the blood–brain barrier and be taken up by glial cells, where it is converted to 1-methyl-4-phenylpyridinium (MPP+) by MAO-B [99]. MPP+ can bind the mitochondrial complex I, leading to ROS generation and mitochondrial dysfunction [100]. However, increased DA content has been identified to enhance the rotenone- and MPP+-induced toxicity in various in vitro studies [101, 102]. The oxidation of DA aggravates the dopaminergic cell death induced by MPP+ challenge [103], while DA depletion can remarkably alleviate dopaminergic neuronal degeneration caused by mitochondrial complex I inhibitors [104]. Also, downregulation of TH expression by RNAi approach can significantly alleviate the rotenone-induced dopaminergic neuronal degeneration in Drosophila [35].
Numerous studies have indicated the vital pathogenic roles of iron species in PD pathogenesis [14]. Accumulation of iron species has been found in the SN region in both post-mortem brain tissues and in living PD patients [105, 106]. Recent evidence demonstrates that iron species can induce DA-relevant toxicity in dopaminergic neurons [107]. DA has been found to promote cellular iron accumulation and enhance oxidative stress responses in macrophages [108]. Iron, as a co-factor of TH, increases TH activity and upregulates DA levels, while this is not seen with other divalent metal ions [109, 110]. Furthermore, iron species, especially free iron ions, form specific iron-DA complexes and subsequently mediate extensive DA oxidation to produce deleterious DAQs and ROS, leading to proteasome inhibition, dopaminergic neuron vulnerability and degeneration [107]. The iron-DA complex formation can be disrupted by iron chelators, thus abrogating the iron species-mediated DA oxidation; however, DAQ-scavenging agents, including GSH and ascorbate, do not have these effects [107]. In contrast, they can alleviate the toxicity of by-products of iron-mediated DA oxidation, suggesting different protective mechanisms and profiles of these neuroprotective agents [107].
Currently, L-DOPA replacement is an effective therapeutic strategy to alleviate PD symptoms via enhancing DA levels in PD brains. Whether L-DOPA protects or impairs dopaminergic neurons is still under debate. The protective effects of L-DOPA have been reported in some PD models [111, 112]. However, some studies also showed toxicity of L-DOPA to neurons and non-neuronal cells, as L-DOPA can undergo auto-oxidation to generate toxic and reactive ROS and DAQs [113, 114]. In a systems-level computational model of SN-striatum, L-DOPA treatment was observed to result in a loss of dopaminergic neuronal terminals in the SN under energy deficiency, which was alleviated by co-administration of GSH [115]. Recently, Hörmann et al. reported that L-DOPA can mediate both a neurotoxic and a neuroprotective activity, depending on the oxygen tension. They found that at physiological oxygen levels (which are very distinct to normoxic conditions in all in vitro experiments), L-DOPA inhibited mitochondrial functions, suppressed oxidative phosphorylation and depleted the NADH pool, in the absence of L-DOPA auto-oxidation and oxidative cell damage [116]. Furthermore, a previous study showed that as a close structural analogue of L-tyrosine, L-DOPA can be incorporated into synthesized proteins, leading to protein misfolding and inactivation in SH-SY5Y neuroblastoma cells [117]. These findings suggest that the mechanisms of L-DOPA toxicity are complicated and warrant further investigations.

Crosstalk between DA and PD genes in PD pathogenesis

Although most PD cases are sporadic, familial forms of PD caused by genetic mutations account for about 5%–10% of PD cases. So far, multiple PD-associated genes have been identified, including SNCA, LRRK2, PINK1, Parkin, DJ-1 and GBA1. Recent studies have suggested interactions between DA and PD-linked genetic factors, which promote neurodegeneration of dopaminergic neurons.

SNCA

The SNCA gene encoding α-syn is the first identified PD-related gene. Mutations in SNCA, including missense and multiplication mutations, can cause early-onset autosomal-dominant PD [15]. The α-syn protein can form aggregates, which are the major component of Lewy bodies in PD patient brains [118, 119]. Studies have shown that the toxicity of α-syn is DA-relevant [120122]. Elevated DA levels can aggravate degeneration of dopaminergic neurons induced by either wild-type (WT) or mutant α-syn [121]. A previous study demonstrated that WT α-syn is beneficial to dopaminergic neurons, whereas overexpression of WT α-syn in the presence of DA induce dopaminergic neuronal damage [120, 122]. Inhibition of TH by α-methyltyrosine (α-MT) alleviates WT or mutant α-syn-induced dopaminergic neuron toxicity [120]. DA-derived products have been shown to conjugate with α-syn proteins and stabilize toxic α-syn oligomers, which have been validated in numerous in vitro and in vivo studies [123, 124]. The α-syn protofibrils can form pore-like assemblies on the membranes of intracellular vesicles to impair vesicle integrity, leading to leakage of vesicle contents and dopaminergic neuron vulnerability [125]. DA-derived DAQs and DOPAL can conjugate with α-syn to form unstructured adducts, slowing the conversion of α-syn protofibrils to fibrils and elevating the toxicity of α-syn protofibrils [68, 126]. DOPAL reacts with α-syn protein, leading to α-syn accumulation, proteostasis disturbance and degeneration of dopaminergic neurons in PD models [69]. The increased, DOPAL-modified α-syn has been detected in post-mortem striatal tissues from idiopathic PD patients, correlating with the DA-dependent α-syn pathology [69]. Furthermore, increased DA level has been identified in mice expressing human A53T mutant α-syn [124]. The elevated DA level is positively associated with the formation and toxicity of α-syn oligomers, suggesting a potential adverse DA–α-syn feedback loop in dopaminergic neurons under SNCA mutations [124].

LRRK and PINK1

LRRK2 and PINK1 are two serine/threonine-protein kinases related to PD. LRRK2 is a widely expressed, large, single-polypeptide protein with multiple domains including ankyrin, leucine-rich repeat, WD40 repeats, and the catalytic core, Ras-of-complex proteins (ROC)-GTPase domain with serine/threonine kinase activities [127]. LRRK2 plays multiple roles in various signaling pathways via phosphorylation of its substrates [128, 129]. The toxicity of LRRK2 mutants is dependent on the increased kinase activity as shown in in vitro and in vivo studies [19]. The dominant G2019S LRRK2 mutation with increased serine/threonine kinase activity is well-known as the most prevalent cause of genetic factor-induced late-onset sporadic and familial forms of PD [130]. PINK1 is a 68-kDa serine-threonine kinase containing 581 amino acids. PINK1 mutations can contribute to autosomal recessive, early-onset PD [131]. PINK1 has an N-terminal mitochondria-targeting fragment, followed by a transmembrane domain, a serine/threonine kinase domain and a regulatory C-terminal domain [42]. Most PD-linked PINK1 mutations are located within the kinase domain, indicating that the PINK1 kinase activity is the key to its neuroprotective roles in dopaminergic neurons [16].
Previous studies demonstrated that LRRK2 and PINK1 mutations promote dopaminergic neuronal toxicity. The LRRK2 mutations impair synaptic vesicle endocytosis, leading to alterations of DA metabolism and DA-mediated toxic effects in dopaminergic neurons derived from iPSCs generated from reprogrammed PD patient fibroblasts carrying LRRK2 mutations [132]. The PINK1 protein is mostly localized in mitochondria; however, extra-mitochondrial fragment of PINK1 can modulate TH expression and DA level in dopaminergic neurons in a PINK1 kinase activity-dependent manner [42]. The overexpression of WT PINK1 has been shown to down-regulate TH expression and DA level to protect human dopaminergic neurons [42]. However, transfection of PD-related PINK1 mutants up-regulated TH and DA levels in dopaminergic neurons, making them vulnerable to oxidative stress [42]. Furthermore, recent findings highlight the vital role of the LRRK2–PINK1 kinase pair in the modulation of the TH–DA pathway in PD pathogenesis [44]. LRRK2 and PINK1 form a functional protein kinase pair to modulate TH and DA levels in dopaminergic neurons, and this observation has been validated in multiple in vitro and in vivo PD models, including human dopaminergic neurons and midbrain organoid models derived from patient cell-induced iPSCs [44]. LRRK2 promotes TH expression and increases DA generation which can be aggravated by LRRK2 mutations, while WT PINK1 suppresses TH expression and DA generation, which can be abrogated by PD-linked PINK1 mutations [44]. Furthermore, LRRK2 and PINK1 can facilitate proteasome degradation of each other to reciprocally down-regulate their protein levels, reaching a functional balance [44]. Under physiological conditions, LRRK2 and PINK1 form a functional balance to maintain normal TH expression and DA synthesis in dopaminergic neurons [44]. However, in the presence of LRRK2 mutations, the LRRK2 kinase activity is increased, leading to up-regulated TH expression and increased DA synthesis [44]. The increased LRRK2 kinase activity will also facilitate UPS degradation of PINK1, impairing functions of PINK1 [44]. This can contribute to the imbalance between the LRRK2–PINK1 kinase pair, leading to up-regulation of TH expression, increased DA synthesis, enhanced DA oxidation and aggravation of DA-specific stress in dopaminergic neurons, and dopaminergic neuron vulnerability [44]. Similarly, in the presence of PINK1 mutations, the PINK1 kinase activity will be impaired, which also causes the imbalance of the LRRK2–PINK1 kinase pair, leading to disrupted TH–DA pathway and dopaminergic neuron vulnerability [44]. These findings indicate that the LRRK2–PINK1 kinase pair and the TH–DA pathway may be potential therapeutic targets for PD. The impact of the LRRK2–PINK1 kinase pair on the TH–DA pathway, relevant to PD pathogenesis and therapy, is illustrated in Fig. 3.

Parkin

Parkin is a cytosolic protein that functions as a ubiquitin E3 ligase to ubiquitinate target proteins and modulate many cellular processes to protect dopaminergic neurons [133]. Impairment of the E3 ligase activity of Parkin is considered to play a pathogenic role in both sporadic and familial forms of PD [133]. Pathogenic Parkin gene mutations can cause selective DA neurodegeneration and early-onset parkinsonism [133]. It is reported that DAQs can covalently modify Parkin protein in dopaminergic neurons, leading to Parkin protein insolubility and inactivation of its E3 ubiquitin ligase activity [82, 134]. DAQs could conjugate with and modify Cys95 and Cys253 residues of Parkin protein, leading to its insolubility, as revealed in post-mortem patient brain samples and in PD models in vivo [82, 134]. Furthermore, the decreased solubility of Parkin protein is suggested to impair autophagy and contribute to the accumulation of α-syn protein [135]. These findings demonstrate the complicated pathological networks among DA toxicity and PD genes in PD pathogenesis.

DJ-1

DJ-1 is a small and highly conserved homodimeric protein of 189 amino acids, commonly expressed in both brain and peripheral tissues [18]. Mutations of DJ-1 can cause inherent autosomal recessive early-onset PD [18]. It was reported that overexpression of WT DJ-1 enhances cell resistance to DA toxicity and inhibits ROS generation [136]. A recent study indicated that WT DJ-1, rather than its pathogenic L166P mutant protein, protected dopaminergic neurons via inhibiting microglial activation [137]. Glial cells, especially microglia and astrocytes, express DA receptors that can bind DA upon its release into the synaptic cleft by dopaminergic neurons [138140]. DA activates the DA receptors on glial cells upon binding, leading to ROS generation and release of pro-inflammatory cytokines from glial cells, triggering neuronal damage [138140]. It was found that the WT DJ-1 tightly interacts with the p65 subunit of nuclear factor-κB (NF-κB) in the cytoplasm to inhibit glial activation and neuroinflammation-mediated neurotoxicity [137]. However, loss of DJ-1 promotes the dissociation between p65 and NF-κB inhibitor α (IκBα), facilitating p65 nuclear translocation, resulting in more microglial activation and aggregation of microglia-mediated neurotoxicity in an NF-κB-dependent manner [137].
However, DA-derived DAQs can covalently modify cysteine residues of DJ-1 protein to inactivate DJ-1 protein [83]. DAQs can react with three cysteine residues of DJ-1 with different profiles. Cys46 residue of DJ-1 protein is not reactive to DAQs. Cys53 is the most reactive residue towards DAQs, forming a covalent dimer without disturbance of the structure. However, modification of Cys106 by DAQs has the most severe effects on DJ-1 protein structure and function, leading to DJ-1 aggregation [83]. Cys106 of DJ-1 protein plays key roles in cellular oxidative stress response and mitochondrial function modulations [141]. Furthermore, the aggregation of DJ-1 protein is implicated in PD pathogenesis and increased insolubility of DJ-1 protein has been identified in sporadic PD patient brains [142].

GBA1

Apart from the abovementioned gene mutations, mutations of the GBA1 gene, which encodes GCase, a lysosomal enzyme that hydrolyzes glucosylceramide to glucose and ceramide, are among the most common genetic risk factors for the development of PD [17]. Studies have shown a higher frequency of GBA1 mutations in PD than those of other PD-associated genes, including LRKK2, SNCA and PINK1 [143, 144]. GCase protein level and activity are reduced under GBA1 mutations [145, 146]. Evidence shows that DAQs can directly conjugate with GCase and inhibit its enzymatic activity, leading to lysosomal dysfunction and α-syn protein accumulation [147]. Considering the species-specific differences in DA metabolism, Burbulla et al. increased DA synthesis in mouse midbrain neurons, and recapitulated the pathogenic changes found in human dopaminergic neurons, i.e., mitochondrial oxidant stress which leads to DA oxidation, reduced GCase activity and accumulation of α-syn protein [10, 146, 148]. This highlights a role of DA oxidation in mitochondrial and lysosomal dysfunction in PD pathogenesis.

Therapeutic strategies against DA toxicity

Despite advances in PD treatment over the past decades (medications, deep brain stimulation approaches, etc.), currently no drug can reverse the progressive loss of dopaminergic neurons in PD patient brains [149]. DA exerts neuron toxicity via its deleterious metabolites, including ROS, DAQs and DOPAL. Both DAQs and DOPAL can react with sulfhydryl groups, and agents containing sulfhydryl groups, namely, GSH, N-acetylcysteine (NAC) and L-cysteine, are able to competitively conjugate with and detoxify the toxic by-products of DA [5, 150152]. GSH is an important endogenous ROS-scavenger and DAQ-detoxifier [5, 6, 153]. GSH can inhibit and abrogate DA auto-oxidation and enzyme-catalyzed oxidation to suppress the production of reactive ROS and DAQs [5, 6, 153]. GSH can conjugate with DAQs to form GSH-DAQ conjugates, evidenced by the detection of various GSH-DAQ conjugates in post-mortem PD brains [5, 150, 154156]. Meanwhile, reduced levels of GSH were identified in post-mortem PD brains, suggesting impaired GSH defense in PD [157]. Moreover, DAQs can be detoxified through reactions with NAC or L-cysteine to form DAQ conjugation adducts [151, 152]. NAC, an antioxidant and a precursor for GSH, has been used in clinic to improve motor and mental abilities of PD patients, possibly by restoring dopaminergic neuron functions [158, 159]. Recent findings have shown that DAQs can also react and conjugate with hydroxyl groups, especially those within phenol rings [26]. Our recent findings indicate that tea polyphenols can protect dopaminergic neurons via suppression of DA oxidation, reaction with DAQs, inhibition of MAOB, and modulations of the anti-oxidative signaling pathways [26]. The protective potency of tea polyphenols is positively correlated with the number of phenolic hydroxyl groups in their phenol rings [26]. Tea polyphenols with more ring structures and hydroxyl groups are more potent to protect against DA-induced toxicity [26]. Furthermore, the protection of tea polyphenols is more potent than that of sulfhydryl group-containing compounds, including GSH [26]. These findings are promising. In the future, more potent DAQ-detoxification compounds with blood–brain barrier penetrating abilities and versatile protective functions may be identified and developed for PD therapeutic use.
DOPAL produced from DA via MAO catalysis is reactive and toxic to dopaminergic neurons. DOPAL can covalently conjugate to lysine and cysteine residues to induce toxic effects [64, 160]. Lysine mimics have been used in the design of small-molecule inhibitors of histone lysine methyltransferases [161]. Many lysine derivatives have been synthesized and applied in biological research [162, 163]. Therefore, the strategy of scavenging reactive DOPAL aldehydes by an excess of amino molecules or lysine derivatives may protect functional protein lysine residues. As DAQs can also react and conjugate with cysteine and tyrosine residues via MA reaction to induce toxicity, the strategy of protecting protein lysines may be combined with cysteine- and tyrosine-protecting agents, such as GSH, NAC and L-cysteine, to achieve optimized therapeutic effects. Future investigations are needed to test and validate these hypotheses.
In a recent study, inhibition of TH by low-dose α-MT initiated at the early stage was able to prevent LRRK2 G2019S mutation-induced DA neurodegeneration in in vivo PD models [44, 164]. α-MT has been reported to alleviate the degeneration of dopaminergic neurons induced by mutant α-syn and PINK1 [42, 120]. α-MT is a competitive TH inhibitor and has been used clinically for conditions such as hypertension-linked phaeochromocytoma, dystonia, and Huntington's disease [164166]. Low-dose α-MT is safe with no significant side effects even after prolonged usage (3 years) [166]. Considering its low toxicity and high tolerance among human subjects, low-dosage α-MT seems to be promising in protecting dopaminergic neurons and preventing degeneration of dopaminergic neurons in PD. It will be interesting to determine if α-MT therapy can prevent PD onset in prodromal subjects carrying pathogenic PD gene mutations. More clinical studies are warranted to investigate the therapeutic effects of α-MT and other TH inhibitors in PD.

Conclusions

Accumulating evidence suggests that DA exerts neurotoxicity via its metabolites including DAQs, DOPAL and ROS. DA oxidation generates deleterious and highly reactive DAQs, which can covalently conjugate with sulfhydryl and hydroxyl groups of protein cysteine and tyrosine residues, respectively, to form MA adductive products. DOPAL can covalently conjugate with lysine residues to form SB adducts. The formation of DAQ-protein and DOPAL-protein conjugates can lead to inactivation of functional proteins, protein misfolding, and even formation of deleterious protein aggregates, which are implicated in PD pathogenesis.
The vulnerability of dopaminergic neurons caused by DAQs can be alleviated by DA oxidation inhibitors and DAQ-detoxification agents, such as iron chelators, sulfhydryl- and hydroxyl-containing compounds, whereas the toxicity of DOPAL can be inhibited by MAO inhibitors, ALDH activators and amino-molecules or lysine derivatives. Therapeutic strategies targeting DA synthesis, transportation, storage and metabolisms, such as inhibition of TH, may be promising. Recent findings suggest that DA by-products can conjugate with α-syn, Parkin, DJ-1 and GCase, leading to loss of functions of proteins and formation of protein aggregates. The LRRK2–PINK1 kinase pair plays a vital role in modulation of the TH–DA pathway. However, mutations of LRRK2 or PINK1 can disturb the LRRK2–PINK1 kinase balance, leading to increased TH and DA levels and dopaminergic neuron vulnerability. Therefore, LRRK2 kinase inhibitors and PINK1 kinase activators may help maintain the LRRK2–PINK1 balance and promote dopaminergic neuron survival.
DA contributes to neurodegeneration via complicated mechanisms, which may be counteracted by a combination of mechanisms and agents (Fig. 3). Thus, a cocktail of drugs may have better therapeutic effects. For example, cysteine residue-protecting agents such as NAC, may be combined with lysine residue-protecting agents such as lysine derivatives, to achieve improved neuroprotective effects. These protective agents combined with iron chelators and MAOB inhibitors may be able to alleviate the progressive degeneration of dopaminergic neurons in PD.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Literatur
1.
Zurück zum Zitat Meara RJ. Review: the pathophysiology of the motor signs in Parkinson’s disease. Age Ageing. 1994;23(4):342–6.PubMedCrossRef Meara RJ. Review: the pathophysiology of the motor signs in Parkinson’s disease. Age Ageing. 1994;23(4):342–6.PubMedCrossRef
3.
Zurück zum Zitat Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, et al. Dopamine in Parkinson’s disease. Clin Chim Acta. 2021;522:114–26.PubMedCrossRef Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, et al. Dopamine in Parkinson’s disease. Clin Chim Acta. 2021;522:114–26.PubMedCrossRef
4.
Zurück zum Zitat Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedCrossRef Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedCrossRef
5.
Zurück zum Zitat Zhou Z, Thevapriya S, Chao YX, Lim TM, Tan EK. Dopamine (DA) dependent toxicity relevant to DA neuron degeneration in Parkinson’s disease (PD). Austin J Drug Abuse Addict. 2016;3:1010–8. Zhou Z, Thevapriya S, Chao YX, Lim TM, Tan EK. Dopamine (DA) dependent toxicity relevant to DA neuron degeneration in Parkinson’s disease (PD). Austin J Drug Abuse Addict. 2016;3:1010–8.
6.
Zurück zum Zitat Zhou ZD, Lim TM. Roles of glutathione (GSH) in dopamine (DA) oxidation studied by improved tandem HPLC plus ESI-MS. Neurochem Res. 2009;34(2):316–26.PubMedCrossRef Zhou ZD, Lim TM. Roles of glutathione (GSH) in dopamine (DA) oxidation studied by improved tandem HPLC plus ESI-MS. Neurochem Res. 2009;34(2):316–26.PubMedCrossRef
7.
Zurück zum Zitat Antkiewicz-Michaluk L. Endogenous risk factors in Parkinson’s disease: dopamine and tetrahydroisoquinolines. Pol J Pharmacol. 2002;54:567–72.PubMed Antkiewicz-Michaluk L. Endogenous risk factors in Parkinson’s disease: dopamine and tetrahydroisoquinolines. Pol J Pharmacol. 2002;54:567–72.PubMed
8.
Zurück zum Zitat Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22(20):8951–60.PubMedPubMedCentralCrossRef Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22(20):8951–60.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(1):35–56.PubMedPubMedCentralCrossRef Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(1):35–56.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357(6357):1255–61.PubMedPubMedCentralCrossRef Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357(6357):1255–61.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Zhou Z, Kerk S, Meng LT. Endogenous dopamine (DA) renders dopaminergic cells vulnerable to challenge of proteasome inhibitor MG132. Free Radic Res. 2008;42(5):456–66.PubMedCrossRef Zhou Z, Kerk S, Meng LT. Endogenous dopamine (DA) renders dopaminergic cells vulnerable to challenge of proteasome inhibitor MG132. Free Radic Res. 2008;42(5):456–66.PubMedCrossRef
12.
Zurück zum Zitat Zhou ZD, Lim TM. Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res. 2009;43(4):417–30.PubMedCrossRef Zhou ZD, Lim TM. Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res. 2009;43(4):417–30.PubMedCrossRef
13.
Zurück zum Zitat Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002;22(16):7006–15.PubMedPubMedCentralCrossRef Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002;22(16):7006–15.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Salazar J, Mena N, Núñez MT. Iron dyshomeostasis in Parkinson’s disease. J Neural Transm Suppl. 2006;71:205–13. Salazar J, Mena N, Núñez MT. Iron dyshomeostasis in Parkinson’s disease. J Neural Transm Suppl. 2006;71:205–13.
15.
Zurück zum Zitat Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, et al. Alpha-synuclein aggregation in Parkinson’s disease. Front Med. 2021;8:736978.CrossRef Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, et al. Alpha-synuclein aggregation in Parkinson’s disease. Front Med. 2021;8:736978.CrossRef
16.
Zurück zum Zitat Kumar A, Tamjar J, Waddell AD, Woodroof HI, Raimi OG, Shaw AM, et al. Structure of PINK1 and mechanisms of Parkinson’s disease-associated mutations. Elife. 2017;6:e29985.PubMedPubMedCentralCrossRef Kumar A, Tamjar J, Waddell AD, Woodroof HI, Raimi OG, Shaw AM, et al. Structure of PINK1 and mechanisms of Parkinson’s disease-associated mutations. Elife. 2017;6:e29985.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Beavan M, Schapira A. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med. 2013;45:511–21.PubMedCrossRef Beavan M, Schapira A. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med. 2013;45:511–21.PubMedCrossRef
18.
Zurück zum Zitat Repici M, Giorgini F. DJ-1 in Parkinson’s disease: clinical insights and therapeutic perspectives. J Clin Med. 2019;8(9):1377–88.PubMedCentralCrossRef Repici M, Giorgini F. DJ-1 in Parkinson’s disease: clinical insights and therapeutic perspectives. J Clin Med. 2019;8(9):1377–88.PubMedCentralCrossRef
19.
20.
Zurück zum Zitat Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55(6):659–65.PubMedCrossRef Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55(6):659–65.PubMedCrossRef
21.
Zurück zum Zitat Napolitano A, Manini P, d’Ischia M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem. 2011;18:1832–45.PubMedCrossRef Napolitano A, Manini P, d’Ischia M. Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem. 2011;18:1832–45.PubMedCrossRef
22.
Zurück zum Zitat German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev. 2015;67(4):1005–24.PubMedPubMedCentralCrossRef German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev. 2015;67(4):1005–24.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Baronio D, Chen Y-C, Decker AR, Enckell L, Fernández-López B, Semenova S, et al. Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish. Acta Physiol. 2022;234(1):e13725.CrossRef Baronio D, Chen Y-C, Decker AR, Enckell L, Fernández-López B, Semenova S, et al. Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish. Acta Physiol. 2022;234(1):e13725.CrossRef
24.
Zurück zum Zitat Antkiewicz-Michaluk L, Ossowska K, Romańska I, Michaluk J, Vetulani J. 3-Methoxytyramine, an extraneuronal dopamine metabolite plays a physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Eur J Pharmacol. 2008;599(1–3):32–5.PubMedCrossRef Antkiewicz-Michaluk L, Ossowska K, Romańska I, Michaluk J, Vetulani J. 3-Methoxytyramine, an extraneuronal dopamine metabolite plays a physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Eur J Pharmacol. 2008;599(1–3):32–5.PubMedCrossRef
25.
Zurück zum Zitat Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14(4):633–43.PubMed Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14(4):633–43.PubMed
26.
Zurück zum Zitat Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, et al. The therapeutic implications of tea polyphenols against dopamine (da) neuron degeneration in Parkinson’s disease (PD). Cells. 2019;8(8):911–35.PubMedPubMedCentralCrossRef Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, et al. The therapeutic implications of tea polyphenols against dopamine (da) neuron degeneration in Parkinson’s disease (PD). Cells. 2019;8(8):911–35.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Bustamante J, Bredeston L, Malanga G, Mordoh J. Role of melanin as a scavenger of active oxygen species. Pigment Cell Res. 1993;6(5):348–53.PubMedCrossRef Bustamante J, Bredeston L, Malanga G, Mordoh J. Role of melanin as a scavenger of active oxygen species. Pigment Cell Res. 1993;6(5):348–53.PubMedCrossRef
28.
Zurück zum Zitat Knörle R. Neuromelanin in Parkinson’s disease: from fenton reaction to calcium signaling. Neurotox Res. 2018;33(2):515–22.PubMedCrossRef Knörle R. Neuromelanin in Parkinson’s disease: from fenton reaction to calcium signaling. Neurotox Res. 2018;33(2):515–22.PubMedCrossRef
29.
Zurück zum Zitat Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, et al. Neuromelanin enhances the toxicity of α-synuclein in SK-N-SH cells. J Neural Transm. 2012;119:685–91.PubMedCrossRef Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, et al. Neuromelanin enhances the toxicity of α-synuclein in SK-N-SH cells. J Neural Transm. 2012;119:685–91.PubMedCrossRef
30.
Zurück zum Zitat Gonzalez-Sepulveda M, Compte J, Cuadros T, Nicolau A, Guillard-Sirieix C, Peñuelas N, et al. In vivo reduction of age-dependent neuromelanin accumulation mitigates features of Parkinson’s disease. Brain. 2023;146(3):1040–52.PubMedPubMedCentralCrossRef Gonzalez-Sepulveda M, Compte J, Cuadros T, Nicolau A, Guillard-Sirieix C, Peñuelas N, et al. In vivo reduction of age-dependent neuromelanin accumulation mitigates features of Parkinson’s disease. Brain. 2023;146(3):1040–52.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev. 2007;59(2):125–50.PubMedCrossRef Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev. 2007;59(2):125–50.PubMedCrossRef
32.
Zurück zum Zitat Zhang S, Wang R, Wang G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci. 2019;10(2):945–53.PubMedCrossRef Zhang S, Wang R, Wang G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci. 2019;10(2):945–53.PubMedCrossRef
33.
Zurück zum Zitat Inyushin MY, Huertas A, Kucheryavykh YV, Kucheryavykh LY, Tsydzik V, Sanabria P, et al. L-DOPA uptake in astrocytic endfeet enwrapping blood vessels in rat Brain. Parkinsons Dis. 2012;2012:321406.PubMedPubMedCentral Inyushin MY, Huertas A, Kucheryavykh YV, Kucheryavykh LY, Tsydzik V, Sanabria P, et al. L-DOPA uptake in astrocytic endfeet enwrapping blood vessels in rat Brain. Parkinsons Dis. 2012;2012:321406.PubMedPubMedCentral
34.
Zurück zum Zitat Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 2005;25(27):6329–42.PubMedPubMedCentralCrossRef Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 2005;25(27):6329–42.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Bayersdorfer F, Voigt A, Schneuwly S, Botella JA. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson’s disease. Neurobiol Dis. 2010;40(1):113–9.PubMedCrossRef Bayersdorfer F, Voigt A, Schneuwly S, Botella JA. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson’s disease. Neurobiol Dis. 2010;40(1):113–9.PubMedCrossRef
36.
Zurück zum Zitat Filloux F, Townsend JJ. Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol. 1993;119(1):79–88.PubMedCrossRef Filloux F, Townsend JJ. Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol. 1993;119(1):79–88.PubMedCrossRef
37.
Zurück zum Zitat Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A. 1996;93(5):1956–61.PubMedPubMedCentralCrossRef Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A. 1996;93(5):1956–61.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Rabinovic AD, Lewis DA, Hastings TG. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience. 2000;101(1):67–76.PubMedCrossRef Rabinovic AD, Lewis DA, Hastings TG. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience. 2000;101(1):67–76.PubMedCrossRef
39.
Zurück zum Zitat Díaz-Véliz G, Mora S, Dossi MT, Gómez P, Arriagada C, Montiel J, et al. Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol Biochem Behav. 2002;73(4):843–50.PubMedCrossRef Díaz-Véliz G, Mora S, Dossi MT, Gómez P, Arriagada C, Montiel J, et al. Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol Biochem Behav. 2002;73(4):843–50.PubMedCrossRef
40.
Zurück zum Zitat Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett. 2016;612:178–84.PubMedCrossRef Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett. 2016;612:178–84.PubMedCrossRef
41.
Zurück zum Zitat Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res. 2003;989:205.PubMedCrossRef Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res. 2003;989:205.PubMedCrossRef
42.
Zurück zum Zitat Zhou ZD, Refai FS, Xie SP, Ng SH, Chan CHS, Ho PGH, et al. Mutant PINK1 upregulates tyrosine hydroxylase and dopamine levels, leading to vulnerability of dopaminergic neurons. Free Radic Biol Med. 2014;68:220–33.PubMedCrossRef Zhou ZD, Refai FS, Xie SP, Ng SH, Chan CHS, Ho PGH, et al. Mutant PINK1 upregulates tyrosine hydroxylase and dopamine levels, leading to vulnerability of dopaminergic neurons. Free Radic Biol Med. 2014;68:220–33.PubMedCrossRef
43.
Zurück zum Zitat Vecchio LM, Sullivan P, Dunn AR, Bermejo MK, Fu R, Masoud ST, et al. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem. 2021;158(4):960–79.PubMedPubMedCentralCrossRef Vecchio LM, Sullivan P, Dunn AR, Bermejo MK, Fu R, Masoud ST, et al. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem. 2021;158(4):960–79.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhou ZD, Saw WT, Ho PGH, Zhang ZW, Zeng L, Chang YY, et al. The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cell Mol Life Sci. 2022;79(12):599.PubMedPubMedCentralCrossRef Zhou ZD, Saw WT, Ho PGH, Zhang ZW, Zeng L, Chang YY, et al. The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cell Mol Life Sci. 2022;79(12):599.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci. 2007;27(30):8138–48.PubMedPubMedCentralCrossRef Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, et al. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci. 2007;27(30):8138–48.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci. 1999;19(7):2424–31.PubMedPubMedCentralCrossRef Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci. 1999;19(7):2424–31.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, et al. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem. 2008;106(5):2205–17.PubMedPubMedCentralCrossRef Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, et al. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem. 2008;106(5):2205–17.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15(5 Pt 2):4102–8.PubMedPubMedCentralCrossRef Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15(5 Pt 2):4102–8.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci. 1999;19(4):1484–91.PubMedPubMedCentralCrossRef LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci. 1999;19(4):1484–91.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Lohr KM, Stout KA, Dunn AR, Wang M, Salahpour A, Guillot TS, et al. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem Neurosci. 2015;6(5):790–9.PubMedCrossRef Lohr KM, Stout KA, Dunn AR, Wang M, Salahpour A, Guillot TS, et al. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem Neurosci. 2015;6(5):790–9.PubMedCrossRef
51.
Zurück zum Zitat Masoud ST, Vecchio LM, Bergeron Y, Hossain MM, Nguyen LT, Bermejo MK, et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis. 2015;74:66–75.PubMedCrossRef Masoud ST, Vecchio LM, Bergeron Y, Hossain MM, Nguyen LT, Bermejo MK, et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis. 2015;74:66–75.PubMedCrossRef
52.
Zurück zum Zitat Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci. 2008;28(2):425–33.PubMedPubMedCentralCrossRef Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci. 2008;28(2):425–33.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS ONE. 2012;7(2):e31522.PubMedPubMedCentralCrossRef Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS ONE. 2012;7(2):e31522.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O’Donnell KC, et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:636.PubMedCrossRef Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O’Donnell KC, et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:636.PubMedCrossRef
55.
56.
Zurück zum Zitat Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res. 2003;5(3):165–76.PubMedCrossRef Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res. 2003;5(3):165–76.PubMedCrossRef
57.
Zurück zum Zitat Van Laar VS, Mishizen AJ, Cascio M, Hastings TG. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis. 2009;34(3):487–500.PubMedPubMedCentralCrossRef Van Laar VS, Mishizen AJ, Cascio M, Hastings TG. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis. 2009;34(3):487–500.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Wang N, Wang Y, Yu G, Yuan C, Ma J. Quinoprotein adducts accumulate in the substantia Nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cells. Neurochem Res. 2011;36(11):2169–75.PubMedCrossRef Wang N, Wang Y, Yu G, Yuan C, Ma J. Quinoprotein adducts accumulate in the substantia Nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cells. Neurochem Res. 2011;36(11):2169–75.PubMedCrossRef
59.
Zurück zum Zitat Hayashi J, Ton J, Negi S, Stephens D, Pountney DL, Preiss T, et al. The effect of oxidized dopamine on the structure and molecular chaperone function of the small heat-shock proteins, αB-crystallin and Hsp27. Int J Mol Sci. 2021;22(7):3700–20.PubMedPubMedCentralCrossRef Hayashi J, Ton J, Negi S, Stephens D, Pountney DL, Preiss T, et al. The effect of oxidized dopamine on the structure and molecular chaperone function of the small heat-shock proteins, αB-crystallin and Hsp27. Int J Mol Sci. 2021;22(7):3700–20.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res. 2009;34(4):698–706.PubMedCrossRef Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res. 2009;34(4):698–706.PubMedCrossRef
61.
Zurück zum Zitat Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta. 2011;1812(6):663–73.PubMedCrossRef Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta. 2011;1812(6):663–73.PubMedCrossRef
62.
Zurück zum Zitat Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J. Dopamine oxidation and autophagy. Parkinsons Dis. 2012;2012:920953.PubMedPubMedCentral Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J. Dopamine oxidation and autophagy. Parkinsons Dis. 2012;2012:920953.PubMedPubMedCentral
63.
Zurück zum Zitat Biosa A, Arduini I, Soriano ME, Giorgio V, Bernardi P, Bisaglia M, et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson’s disease. ACS Chem Neurosci. 2018;9(11):2849–58.PubMedCrossRef Biosa A, Arduini I, Soriano ME, Giorgio V, Bernardi P, Bisaglia M, et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson’s disease. ACS Chem Neurosci. 2018;9(11):2849–58.PubMedCrossRef
64.
Zurück zum Zitat Rees JN, Florang VR, Eckert LL, Doorn JA. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicol. 2009;22(7):1256–63.PubMedPubMedCentralCrossRef Rees JN, Florang VR, Eckert LL, Doorn JA. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicol. 2009;22(7):1256–63.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Anderson DG, Mariappan SVS, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem. 2011;286(30):26978–86.PubMedPubMedCentralCrossRef Anderson DG, Mariappan SVS, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem. 2011;286(30):26978–86.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE. The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE. 2010;5(12):e15251.PubMedPubMedCentralCrossRef Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE. The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE. 2010;5(12):e15251.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Rees JN, Florang VR, Anderson DG, Doorn JA. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem Res Toxicol. 2007;20(10):1536–42.PubMedCrossRef Rees JN, Florang VR, Anderson DG, Doorn JA. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem Res Toxicol. 2007;20(10):1536–42.PubMedCrossRef
68.
Zurück zum Zitat Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GD, Pinheiro AS, Domont GB, et al. Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of α-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem. 2015;290(46):27660–79.PubMedPubMedCentralCrossRef Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GD, Pinheiro AS, Domont GB, et al. Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of α-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem. 2015;290(46):27660–79.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, et al. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson’s disease. NPJ Parkinson’s Dis. 2023;9(1):42.CrossRef Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, et al. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson’s disease. NPJ Parkinson’s Dis. 2023;9(1):42.CrossRef
70.
Zurück zum Zitat Plotegher N, Bubacco L. Lysines, Achilles’ heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev. 2016;26:62–71.PubMedCrossRef Plotegher N, Bubacco L. Lysines, Achilles’ heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev. 2016;26:62–71.PubMedCrossRef
71.
Zurück zum Zitat Yunden J, Yehonatan S, Patti S, Risa I, David SG. 3,4-Dihydroxyphenylacetaldehyde-induced protein modifications and their mitigation by N-acetylcysteine. J Pharmacol Exp Ther. 2018;366(1):113–24.CrossRef Yunden J, Yehonatan S, Patti S, Risa I, David SG. 3,4-Dihydroxyphenylacetaldehyde-induced protein modifications and their mitigation by N-acetylcysteine. J Pharmacol Exp Ther. 2018;366(1):113–24.CrossRef
72.
Zurück zum Zitat Alqaraghuli HGJ, Kashanian S, Rafipour R, Mansouri K. Dopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin. Nanomed J. 2019;6(4):250–7. Alqaraghuli HGJ, Kashanian S, Rafipour R, Mansouri K. Dopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin. Nanomed J. 2019;6(4):250–7.
73.
Zurück zum Zitat Plotegher N, Berti G, Ferrari E, Tessari I, Zanetti M, Lunelli L, et al. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep. 2017;7:40699.PubMedPubMedCentralCrossRef Plotegher N, Berti G, Ferrari E, Tessari I, Zanetti M, Lunelli L, et al. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep. 2017;7:40699.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax AJB. Isoindole linkages provide a pathway for DOPAL-mediated cross-linking of α-synuclein. Biochemistry. 2018;57(9):1462–74.PubMedCrossRef Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax AJB. Isoindole linkages provide a pathway for DOPAL-mediated cross-linking of α-synuclein. Biochemistry. 2018;57(9):1462–74.PubMedCrossRef
75.
Zurück zum Zitat Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic dopamine metabolite DOPAL forms an unexpected dicatechol pyrrole adduct with lysines of α-synuclein. Angew Chem Int Ed Engl. 2016;55(26):7374–8.PubMedPubMedCentralCrossRef Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic dopamine metabolite DOPAL forms an unexpected dicatechol pyrrole adduct with lysines of α-synuclein. Angew Chem Int Ed Engl. 2016;55(26):7374–8.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Investig. 2008;118(2):777–88.PubMedPubMedCentral Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Investig. 2008;118(2):777–88.PubMedPubMedCentral
77.
Zurück zum Zitat Cappai R, Leck S-L, Tew DJ, Williamson NA, Smith DP, Galatis D, et al. Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J. 2005;19(10):1377–9.PubMedCrossRef Cappai R, Leck S-L, Tew DJ, Williamson NA, Smith DP, Galatis D, et al. Dopamine promotes α-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J. 2005;19(10):1377–9.PubMedCrossRef
78.
Zurück zum Zitat Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is more efficient than dopamine in oligomerizing and quinonizing α-synuclein. J Pharmacol Exp Ther. 2020;372(2):157–65.PubMedPubMedCentralCrossRef Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is more efficient than dopamine in oligomerizing and quinonizing α-synuclein. J Pharmacol Exp Ther. 2020;372(2):157–65.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Bisaglia M, Mammi S, Bubacco L. Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem. 2007;282(21):15597–605.PubMedCrossRef Bisaglia M, Mammi S, Bubacco L. Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem. 2007;282(21):15597–605.PubMedCrossRef
80.
Zurück zum Zitat Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, et al. Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochem Biophys Res Commun. 2010;394(2):424–8.PubMedCrossRef Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, et al. Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochem Biophys Res Commun. 2010;394(2):424–8.PubMedCrossRef
81.
Zurück zum Zitat Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol. 2017;298:180–90.PubMedCrossRef Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol. 2017;298:180–90.PubMedCrossRef
82.
Zurück zum Zitat LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11(11):1214–21.PubMedCrossRef LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11(11):1214–21.PubMedCrossRef
83.
Zurück zum Zitat Girotto S, Sturlese M, Bellanda M, Tessari I, Cappellini R, Bisaglia M, et al. Dopamine-derived quinones affect the structure of the redox sensor DJ-1 through modifications at Cys-106 and Cys-53. J Biol Chem. 2012;287(22):18738–49.PubMedPubMedCentralCrossRef Girotto S, Sturlese M, Bellanda M, Tessari I, Cappellini R, Bisaglia M, et al. Dopamine-derived quinones affect the structure of the redox sensor DJ-1 through modifications at Cys-106 and Cys-53. J Biol Chem. 2012;287(22):18738–49.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem. 2001;76(4):1242–51.PubMedCrossRef Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem. 2001;76(4):1242–51.PubMedCrossRef
85.
Zurück zum Zitat Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013;65:419–27.PubMedPubMedCentralCrossRef Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013;65:419–27.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, et al. Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res. 2010;18(1):82–92.PubMedCrossRef Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, et al. Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res. 2010;18(1):82–92.PubMedCrossRef
87.
Zurück zum Zitat Wakamatsu K, Nakao K, Tanaka H, Kitahori Y, Tanaka Y, Ojika M, et al. The Oxidative pathway to dopamine-protein conjugates and their pro-oxidant activities: implications for the neurodegeneration of parkinson’s disease. Int J Mol Sci. 2019;20(10):2575.PubMedPubMedCentralCrossRef Wakamatsu K, Nakao K, Tanaka H, Kitahori Y, Tanaka Y, Ojika M, et al. The Oxidative pathway to dopamine-protein conjugates and their pro-oxidant activities: implications for the neurodegeneration of parkinson’s disease. Int J Mol Sci. 2019;20(10):2575.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Ferrari E, Engelen M, Monzani E, Sturini M, Girotto S, Bubacco L, et al. Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. J Biol Inorg Chem. 2013;18(1):81–93.PubMedCrossRef Ferrari E, Engelen M, Monzani E, Sturini M, Girotto S, Bubacco L, et al. Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. J Biol Inorg Chem. 2013;18(1):81–93.PubMedCrossRef
89.
Zurück zum Zitat Vanle BC, Florang VR, Murry DJ, Aguirre AL, Doorn JA. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by the dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde. Biochem Biophys Res Commun. 2017;492(2):275–81.PubMedPubMedCentralCrossRef Vanle BC, Florang VR, Murry DJ, Aguirre AL, Doorn JA. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by the dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde. Biochem Biophys Res Commun. 2017;492(2):275–81.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Nicolis S, Zucchelli M, Monzani E, Casella L. Myoglobin modification by enzyme-generated dopamine reactive species. Chemistry. 2008;14(28):8661–73.PubMedCrossRef Nicolis S, Zucchelli M, Monzani E, Casella L. Myoglobin modification by enzyme-generated dopamine reactive species. Chemistry. 2008;14(28):8661–73.PubMedCrossRef
91.
Zurück zum Zitat Yu G, Liu H, Zhou W, Zhu X, Yu C, Wang N, et al. In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Exp Neurol. 2015;271:13–24.PubMedCrossRef Yu G, Liu H, Zhou W, Zhu X, Yu C, Wang N, et al. In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Exp Neurol. 2015;271:13–24.PubMedCrossRef
92.
Zurück zum Zitat Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, Bubacco L. Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson’s disease. PLoS ONE. 2012;7(6):e38026.PubMedPubMedCentralCrossRef Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, Bubacco L. Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson’s disease. PLoS ONE. 2012;7(6):e38026.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein. J Neurochem. 1999;73(3):1309–17.PubMedCrossRef Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein. J Neurochem. 1999;73(3):1309–17.PubMedCrossRef
94.
Zurück zum Zitat Xu Y, Stokes AH, Roskoski R Jr, Vrana KE. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res. 1998;54(5):691–7.PubMedCrossRef Xu Y, Stokes AH, Roskoski R Jr, Vrana KE. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res. 1998;54(5):691–7.PubMedCrossRef
95.
Zurück zum Zitat Mexas LM, Florang VR, Doorn JA. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology. 2011;32(4):471–7.PubMedPubMedCentralCrossRef Mexas LM, Florang VR, Doorn JA. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology. 2011;32(4):471–7.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis. 2021;11(1):45–60.PubMedPubMedCentralCrossRef Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis. 2021;11(1):45–60.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, et al. Mitochondrial function and Parkinson’s disease: from the perspective of the electron transport chain. Front Mol Neurosci. 2021;14:797833.PubMedPubMedCentralCrossRef Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, et al. Mitochondrial function and Parkinson’s disease: from the perspective of the electron transport chain. Front Mol Neurosci. 2021;14:797833.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr. 2009;41(6):469–72.PubMedCrossRef Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr. 2009;41(6):469–72.PubMedCrossRef
99.
Zurück zum Zitat O’Callaghan JP, Seidler FJ. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced astrogliosis does not require activation of ornithine decarboxylase. Neurosci Lett. 1992;148(1–2):105–8.PubMedCrossRef O’Callaghan JP, Seidler FJ. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced astrogliosis does not require activation of ornithine decarboxylase. Neurosci Lett. 1992;148(1–2):105–8.PubMedCrossRef
100.
Zurück zum Zitat Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflamm. 2011;8:129.CrossRef Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflamm. 2011;8:129.CrossRef
101.
Zurück zum Zitat Hsieh YC, Mounsey RB, Teismann P. MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(2):157–67.PubMedPubMedCentralCrossRef Hsieh YC, Mounsey RB, Teismann P. MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(2):157–67.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Gao L, Zhou W, Symmes B, Freed CR. Re-cloning the N27 dopamine cell line to improve a cell culture model of parkinson’s disease. PLoS ONE. 2016;11(8):e0160847.PubMedPubMedCentralCrossRef Gao L, Zhou W, Symmes B, Freed CR. Re-cloning the N27 dopamine cell line to improve a cell culture model of parkinson’s disease. PLoS ONE. 2016;11(8):e0160847.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Lotharius J, O’Malley KL. The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation: a novel mehanism of toxicity. J Biol Chem. 2000;275(49):38581–8.PubMedCrossRef Lotharius J, O’Malley KL. The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation: a novel mehanism of toxicity. J Biol Chem. 2000;275(49):38581–8.PubMedCrossRef
104.
Zurück zum Zitat Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol. 1999;155(2):268–73.PubMedCrossRef Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol. 1999;155(2):268–73.PubMedCrossRef
105.
Zurück zum Zitat Michaeli S, Oz G, Sorce DJ, Garwood M, Ugurbil K, Majestic S, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov Disord. 2007;22(3):334–40.PubMedCrossRef Michaeli S, Oz G, Sorce DJ, Garwood M, Ugurbil K, Majestic S, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov Disord. 2007;22(3):334–40.PubMedCrossRef
106.
Zurück zum Zitat Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia. 1993;4(2):61–5.PubMed Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia. 1993;4(2):61–5.PubMed
107.
Zurück zum Zitat Zhou ZD, Lan YH, Tan EK, Lim TM. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med. 2010;49(12):1856–71.PubMedCrossRef Zhou ZD, Lan YH, Tan EK, Lim TM. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med. 2010;49(12):1856–71.PubMedCrossRef
108.
Zurück zum Zitat Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, et al. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol. 2018;148:193–201.PubMedCrossRef Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, et al. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol. 2018;148:193–201.PubMedCrossRef
109.
Zurück zum Zitat Haavik J, Le Bourdelles B, Martinez A, Flatmark T, Mallet J. Recombinant human tyrosine hydroxylase isozymes. Eur J Biochem. 1991;199(2):371–8.PubMedCrossRef Haavik J, Le Bourdelles B, Martinez A, Flatmark T, Mallet J. Recombinant human tyrosine hydroxylase isozymes. Eur J Biochem. 1991;199(2):371–8.PubMedCrossRef
110.
Zurück zum Zitat Xiao G, Zhao M, Liu Z, Du F, Zhou B. Zinc antagonizes iron-regulation of tyrosine hydroxylase activity and dopamine production in Drosophila melanogaster. BMC Biol. 2021;19(1):236.PubMedPubMedCentralCrossRef Xiao G, Zhao M, Liu Z, Du F, Zhou B. Zinc antagonizes iron-regulation of tyrosine hydroxylase activity and dopamine production in Drosophila melanogaster. BMC Biol. 2021;19(1):236.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Colamartino M, Padua L, Meneghini C, Leone S, Cornetta T, Testa A, et al. Protective effects of L-dopa and carbidopa combined treatments on human catecholaminergic cells. DNA Cell Biol. 2012;31(11):1572–9.PubMedCrossRef Colamartino M, Padua L, Meneghini C, Leone S, Cornetta T, Testa A, et al. Protective effects of L-dopa and carbidopa combined treatments on human catecholaminergic cells. DNA Cell Biol. 2012;31(11):1572–9.PubMedCrossRef
112.
Zurück zum Zitat Han SK, Mytilineou C, Cohen G. L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem. 1996;66(2):501–10.PubMedCrossRef Han SK, Mytilineou C, Cohen G. L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem. 1996;66(2):501–10.PubMedCrossRef
113.
Zurück zum Zitat Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. l-DOPA administration enhances 6-hydroxydopamine generation. Brain Res. 2005;1063(2):180–6.PubMedCrossRef Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. l-DOPA administration enhances 6-hydroxydopamine generation. Brain Res. 2005;1063(2):180–6.PubMedCrossRef
114.
Zurück zum Zitat Melamed E, Offen D, Shirvan A, Djaldetti R, Barzilai A, Ziv I. Levodopa toxicity and apoptosis. Ann Neurol. 1998;44(3 Suppl 1):S149–54.PubMed Melamed E, Offen D, Shirvan A, Djaldetti R, Barzilai A, Ziv I. Levodopa toxicity and apoptosis. Ann Neurol. 1998;44(3 Suppl 1):S149–54.PubMed
115.
Zurück zum Zitat Muddapu VR-J, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A multi-scale computational model of levodopa-induced toxicity in Parkinson’s disease. Front Neurosci. 2022;16:797127.PubMedPubMedCentralCrossRef Muddapu VR-J, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A multi-scale computational model of levodopa-induced toxicity in Parkinson’s disease. Front Neurosci. 2022;16:797127.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by l-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov. 2021;7(1):151.PubMedPubMedCentralCrossRef Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by l-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov. 2021;7(1):151.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ. L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol. 2012;238(1):29–37.PubMedCrossRef Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ. L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol. 2012;238(1):29–37.PubMedCrossRef
118.
Zurück zum Zitat Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14(9):626–36.PubMedPubMedCentralCrossRef Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013;14(9):626–36.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007;27(5):494–506.CrossRef Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007;27(5):494–506.CrossRef
120.
Zurück zum Zitat Zhou ZD, Yap BP, Gung AY, Leong SM, Ang ST, Lim TM. Dopamine-related and caspase-independent apoptosis in dopaminergic neurons induced by overexpression of human wild type or mutant alpha-synuclein. Exp Cell Res. 2006;312(2):156–70.PubMedCrossRef Zhou ZD, Yap BP, Gung AY, Leong SM, Ang ST, Lim TM. Dopamine-related and caspase-independent apoptosis in dopaminergic neurons induced by overexpression of human wild type or mutant alpha-synuclein. Exp Cell Res. 2006;312(2):156–70.PubMedCrossRef
121.
Zurück zum Zitat Bisaglia M, Greggio E, Maric D, Miller DW, Cookson MR, Bubacco L. α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neurosci. 2010;11(1):41–7.PubMedPubMedCentralCrossRef Bisaglia M, Greggio E, Maric D, Miller DW, Cookson MR, Bubacco L. α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neurosci. 2010;11(1):41–7.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34(2):167–79.PubMedPubMedCentralCrossRef Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34(2):167–79.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294(5545):1346–9.PubMedCrossRef Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294(5545):1346–9.PubMedCrossRef
124.
Zurück zum Zitat Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci. 2017;20(11):1560–8.PubMedPubMedCentralCrossRef Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci. 2017;20(11):1560–8.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, et al. Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci. 2004;23(1–2):23–34.PubMedCrossRef Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, et al. Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci. 2004;23(1–2):23–34.PubMedCrossRef
126.
Zurück zum Zitat Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, et al. Dopamine quinones interact with alpha-synuclein to form unstructured adducts. Biochem Biophys Res Commun. 2010;394(2):424–8.PubMedCrossRef Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, et al. Dopamine quinones interact with alpha-synuclein to form unstructured adducts. Biochem Biophys Res Commun. 2010;394(2):424–8.PubMedCrossRef
128.
Zurück zum Zitat Wang Y, Zhang X, Chen F, Chen L, Wang J, Xie J. LRRK2-NFATc2 pathway associated with neuroinflammation may be a potential therapeutic target for Parkinson’s disease. J Inflamm Res. 2021;14:2583–6.PubMedPubMedCentralCrossRef Wang Y, Zhang X, Chen F, Chen L, Wang J, Xie J. LRRK2-NFATc2 pathway associated with neuroinflammation may be a potential therapeutic target for Parkinson’s disease. J Inflamm Res. 2021;14:2583–6.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Simpson C, Vinikoor-Imler L, Nassan FL, Shirvan J, Lally C, Dam T, et al. Prevalence of ten LRRK2 variants in Parkinson’s disease: a comprehensive review. Parkinsonism Relat Disord. 2022;98:103–13.PubMedCrossRef Simpson C, Vinikoor-Imler L, Nassan FL, Shirvan J, Lally C, Dam T, et al. Prevalence of ten LRRK2 variants in Parkinson’s disease: a comprehensive review. Parkinsonism Relat Disord. 2022;98:103–13.PubMedCrossRef
131.
Zurück zum Zitat Rakovic A, Grünewald A, Seibler P, Ramirez A, Kock N, Orolicki S, et al. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet. 2010;19(16):3124–37.PubMedCrossRef Rakovic A, Grünewald A, Seibler P, Ramirez A, Kock N, Orolicki S, et al. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet. 2010;19(16):3124–37.PubMedCrossRef
132.
Zurück zum Zitat Nguyen M, Krainc D. LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson’s disease. Proc Natl Acad Sci U S A. 2018;115(21):5576–81.PubMedPubMedCentralCrossRef Nguyen M, Krainc D. LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson’s disease. Proc Natl Acad Sci U S A. 2018;115(21):5576–81.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 2010;25(Suppl 1):S32–9.PubMedPubMedCentral Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord. 2010;25(Suppl 1):S32–9.PubMedPubMedCentral
134.
Zurück zum Zitat Tokarew JM, El-Kodsi DN, Lengacher NA, Fehr TK, Nguyen AP, Shutinoski B, et al. Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathol. 2021;141(5):725–54.PubMedPubMedCentralCrossRef Tokarew JM, El-Kodsi DN, Lengacher NA, Fehr TK, Nguyen AP, Shutinoski B, et al. Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathol. 2021;141(5):725–54.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience. 2013;232:90–105.PubMedCrossRef Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience. 2013;232:90–105.PubMedCrossRef
136.
Zurück zum Zitat Lev N, Ickowicz D, Barhum Y, Lev S, Melamed E, Offen D. DJ-1 protects against dopamine toxicity. J Neural Transm. 2009;116(2):151–60.PubMedCrossRef Lev N, Ickowicz D, Barhum Y, Lev S, Melamed E, Offen D. DJ-1 protects against dopamine toxicity. J Neural Transm. 2009;116(2):151–60.PubMedCrossRef
137.
Zurück zum Zitat Lin Z, Chen C, Yang D, Ding J, Wang G, Ren H. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 2021;12(8):715.PubMedPubMedCentralCrossRef Lin Z, Chen C, Yang D, Ding J, Wang G, Ren H. DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis. 2021;12(8):715.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol. 2019;76:105908.PubMedCrossRef Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol. 2019;76:105908.PubMedCrossRef
139.
Zurück zum Zitat Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun. 2017;62:277–90.PubMedCrossRef Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun. 2017;62:277–90.PubMedCrossRef
140.
Zurück zum Zitat Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, et al. Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging. 2009;30(11):1805–17.PubMedCrossRef Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, et al. Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging. 2009;30(11):1805–17.PubMedCrossRef
141.
Zurück zum Zitat Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.PubMedPubMedCentralCrossRef Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102(46):16842–7.PubMedPubMedCentralCrossRef West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102(46):16842–7.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61.PubMedPubMedCentralCrossRef Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Burbulla LF, Jeon S, Zheng J, Song P, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease. Sci Transl Med. 2019;11(514):eaau6870. CrossRefPubMedPubMedCentral Burbulla LF, Jeon S, Zheng J, Song P, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson’s disease. Sci Transl Med. 2019;11(514):eaau6870. CrossRefPubMedPubMedCentral
146.
Zurück zum Zitat Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci. 2016;36(29):7693–706.PubMedPubMedCentralCrossRef Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci. 2016;36(29):7693–706.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Monzani E, Nicolis S, Dell’Acqua S, Capucciati A, Bacchella C, Zucca FA, et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew Chem Int Ed Engl. 2019;58(20):6512–27.PubMedCrossRef Monzani E, Nicolis S, Dell’Acqua S, Capucciati A, Bacchella C, Zucca FA, et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew Chem Int Ed Engl. 2019;58(20):6512–27.PubMedCrossRef
148.
Zurück zum Zitat Chiasserini D, Paciotti S, Eusebi P, Persichetti E, Tasegian A, Kurzawa-Akanbi M, et al. Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurodegener. 2015;10:15.PubMedPubMedCentralCrossRef Chiasserini D, Paciotti S, Eusebi P, Persichetti E, Tasegian A, Kurzawa-Akanbi M, et al. Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurodegener. 2015;10:15.PubMedPubMedCentralCrossRef
149.
150.
Zurück zum Zitat Zhou ZD, Lim TM. Glutathione conjugates with dopamine-derived quinones to form reactive or non-reactive glutathione-conjugates. Neurochem Res. 2010;35(11):1805–18.PubMedCrossRef Zhou ZD, Lim TM. Glutathione conjugates with dopamine-derived quinones to form reactive or non-reactive glutathione-conjugates. Neurochem Res. 2010;35(11):1805–18.PubMedCrossRef
151.
Zurück zum Zitat Banaclocha MM. Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses. 2001;56(4):472–7.PubMedCrossRef Banaclocha MM. Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses. 2001;56(4):472–7.PubMedCrossRef
152.
Zurück zum Zitat Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000;1(3):181–95.PubMedCrossRef Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000;1(3):181–95.PubMedCrossRef
153.
Zurück zum Zitat Jia Z, Zhu H, Misra HP, Li Y. Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H–1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res. 2008;1197:159–69.PubMedPubMedCentralCrossRef Jia Z, Zhu H, Misra HP, Li Y. Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H–1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res. 2008;1197:159–69.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–22.PubMedCrossRef Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–22.PubMedCrossRef
155.
Zurück zum Zitat Spencer JP, Jenner P, Halliwell B. Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson’s disease. NeuroReport. 1995;6(11):1480–4.PubMedCrossRef Spencer JP, Jenner P, Halliwell B. Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson’s disease. NeuroReport. 1995;6(11):1480–4.PubMedCrossRef
156.
Zurück zum Zitat Rosengren E, Linder-Eliasson E, Carlsson A. Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm. 1985;63(3):247–53.PubMedCrossRef Rosengren E, Linder-Eliasson E, Carlsson A. Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm. 1985;63(3):247–53.PubMedCrossRef
157.
Zurück zum Zitat Martin HL, Teismann P. Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J. 2009;23(10):3263–72.PubMedCrossRef Martin HL, Teismann P. Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J. 2009;23(10):3263–72.PubMedCrossRef
158.
Zurück zum Zitat Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Bazzan AJ, et al. N-Acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther. 2019;106(4):884–90.PubMedCrossRef Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Bazzan AJ, et al. N-Acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther. 2019;106(4):884–90.PubMedCrossRef
159.
Zurück zum Zitat Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. Clin Pharmacol Ther. 2018;58(2):158–67. Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. Clin Pharmacol Ther. 2018;58(2):158–67.
160.
Zurück zum Zitat Anderson DG, Florang VR, Schamp JH, Buettner GR, Doorn JA. Antioxidant-mediated modulation of protein reactivity for 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Chem Res Toxicol. 2016;29(7):1098–107.PubMedPubMedCentralCrossRef Anderson DG, Florang VR, Schamp JH, Buettner GR, Doorn JA. Antioxidant-mediated modulation of protein reactivity for 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Chem Res Toxicol. 2016;29(7):1098–107.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Chang Y, Ganesh T, Horton JR, Spannhoff A, Liu J, Sun A, et al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J Mol Biol. 2010;400(1):1–7.PubMedPubMedCentralCrossRef Chang Y, Ganesh T, Horton JR, Spannhoff A, Liu J, Sun A, et al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J Mol Biol. 2010;400(1):1–7.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Flügel V, Vrabel M, Schneider S. Structural basis for the site-specific incorporation of lysine derivatives into proteins. PLoS ONE. 2014;9(4):e96198.PubMedPubMedCentralCrossRef Flügel V, Vrabel M, Schneider S. Structural basis for the site-specific incorporation of lysine derivatives into proteins. PLoS ONE. 2014;9(4):e96198.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Narang N, Sato T. Liquid–liquid phase separation and self-assembly of a lysine derivative Fmoc-l-lysine in water-DMSO mixtures. Polym J. 2021;53(12):1413–24.CrossRef Narang N, Sato T. Liquid–liquid phase separation and self-assembly of a lysine derivative Fmoc-l-lysine in water-DMSO mixtures. Polym J. 2021;53(12):1413–24.CrossRef
164.
Zurück zum Zitat Burke RE, Fahn S, Mayeux R, Weinberg H, Louis K, Willner JH. Neuroleptic malignant syndrome caused by dopamine-depleting drugs in a patient with Huntington disease. Neurology. 1981;31(8):1022–5.PubMedCrossRef Burke RE, Fahn S, Mayeux R, Weinberg H, Louis K, Willner JH. Neuroleptic malignant syndrome caused by dopamine-depleting drugs in a patient with Huntington disease. Neurology. 1981;31(8):1022–5.PubMedCrossRef
165.
Zurück zum Zitat Brogden RN, Heel RC, Speight TM, Avery GS. alpha-Methyl-p-tyrosine: a review of its pharmacology and clinical use. Drugs. 1981;21(2):81–9.PubMedCrossRef Brogden RN, Heel RC, Speight TM, Avery GS. alpha-Methyl-p-tyrosine: a review of its pharmacology and clinical use. Drugs. 1981;21(2):81–9.PubMedCrossRef
166.
Zurück zum Zitat Ankenman R, Salvatore MF. Low dose alpha-methyl-para-tyrosine (AMPT) in the treatment of dystonia and dyskinesia. J Neuropsychiatry Clin Neurosci. 2007;19(1):65–9.PubMedCrossRef Ankenman R, Salvatore MF. Low dose alpha-methyl-para-tyrosine (AMPT) in the treatment of dystonia and dyskinesia. J Neuropsychiatry Clin Neurosci. 2007;19(1):65–9.PubMedCrossRef
Metadaten
Titel
Role of dopamine in the pathophysiology of Parkinson’s disease
verfasst von
Zhi Dong Zhou
Ling Xiao Yi
Dennis Qing Wang
Tit Meng Lim
Eng King Tan
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Translational Neurodegeneration / Ausgabe 1/2023
Elektronische ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-023-00378-6

Weitere Artikel der Ausgabe 1/2023

Translational Neurodegeneration 1/2023 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.