Skip to main content
Erschienen in: Brain Structure and Function 9/2021

22.06.2021 | Original Article

Structure and function of neural circuit related to gloss perception in the macaque inferior temporal cortex: a case report

verfasst von: Hidehiko Komatsu, Akiko Nishio, Noritaka Ichinohe, Naokazu Goda

Erschienen in: Brain Structure and Function | Ausgabe 9/2021

Einloggen, um Zugang zu erhalten

Abstract

The inferior temporal (IT) cortex of the macaque monkey plays a pivotal role in the visual recognition of objects. In the IT cortex, a feature-selective network formed by connecting subregions specialized for common visual features seems to be a basic strategy for processing biologically important visual features. Gloss perception plays an important role in the judgment of materials and conditions of objects and is a biologically significant visual function. In the present study, we attempted to determine whether a neural circuit specialized for processing information related to gloss perception exists in the IT cortex in one monkey. We injected retrograde tracer into a gloss-selective subregion in the IT cortex where gloss-selective neurons were clustered in the neural recording experiment, and anatomically examined its neural connections. We observed that retrogradely labeled neurons were densely accumulated in multiple locations in the posterior and anterior IT cortices. Based on the results of this case study, we will discuss the possibility that, together with the injection site, the sites with a dense cluster of labeled neurons form feature-selective neural circuits for the processing of gloss information in the IT cortex.
Literatur
Zurück zum Zitat Anderson BL, Kim J (2009) Image statistics do not explain the perception of gloss and lightness. J vis 9:10CrossRef Anderson BL, Kim J (2009) Image statistics do not explain the perception of gloss and lightness. J vis 9:10CrossRef
Zurück zum Zitat Baba M, Nishio A, Komatsu H (2021) Relationship between the activities of gloss-selective neurons in the macaque inferior temporal cortex and the gloss discrimination behavior of the monkey. Cereb Cortex Commun 2:1–13 Baba M, Nishio A, Komatsu H (2021) Relationship between the activities of gloss-selective neurons in the macaque inferior temporal cortex and the gloss discrimination behavior of the monkey. Cereb Cortex Commun 2:1–13
Zurück zum Zitat Banno T, Ichinohe N, Rockland KS, Komatsu H (2011) Reciprocal connectivity of identified color-processing modules in the monkey inferior temporal cortex. Cereb Cortex 21:1295–1310CrossRef Banno T, Ichinohe N, Rockland KS, Komatsu H (2011) Reciprocal connectivity of identified color-processing modules in the monkey inferior temporal cortex. Cereb Cortex 21:1295–1310CrossRef
Zurück zum Zitat Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RBH, Ungerleider LG (2008) Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J Neurophysiol 101:688–700CrossRef Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RBH, Ungerleider LG (2008) Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J Neurophysiol 101:688–700CrossRef
Zurück zum Zitat Blake A, Bülthoff HH (1990) Does the brain know the physics of specular reflection? Nature 343:165–168CrossRef Blake A, Bülthoff HH (1990) Does the brain know the physics of specular reflection? Nature 343:165–168CrossRef
Zurück zum Zitat Chang L, Bao P, Tsao DY (2017) The representation of colored objects in macaque color patches. Nat Commun 8:2064CrossRef Chang L, Bao P, Tsao DY (2017) The representation of colored objects in macaque color patches. Nat Commun 8:2064CrossRef
Zurück zum Zitat Conway BR, Moeller S, Tsao DY (2007) Specialized color modules in macaque extrastriate cortex. Neuron 56:560–573CrossRef Conway BR, Moeller S, Tsao DY (2007) Specialized color modules in macaque extrastriate cortex. Neuron 56:560–573CrossRef
Zurück zum Zitat DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73:415–434CrossRef DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73:415–434CrossRef
Zurück zum Zitat Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473CrossRef Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473CrossRef
Zurück zum Zitat Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601CrossRef Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601CrossRef
Zurück zum Zitat Ferwerda J, Pellacini F, Greenberg D (2001) A psychophysically-based model of surface gloss perception. Proc SPIE Human Vision Electronic Imaging 4299:291–301CrossRef Ferwerda J, Pellacini F, Greenberg D (2001) A psychophysically-based model of surface gloss perception. Proc SPIE Human Vision Electronic Imaging 4299:291–301CrossRef
Zurück zum Zitat Fleming RW (2014) Visual perception of materials and their properties. Vision Res 94:62–75CrossRef Fleming RW (2014) Visual perception of materials and their properties. Vision Res 94:62–75CrossRef
Zurück zum Zitat Fleming RW, Gegenfurtner KR, Nishida S (2015) Visual perception of materials: The science of stuff. Vision Res 109:123–124CrossRef Fleming RW, Gegenfurtner KR, Nishida S (2015) Visual perception of materials: The science of stuff. Vision Res 109:123–124CrossRef
Zurück zum Zitat Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851CrossRef Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851CrossRef
Zurück zum Zitat Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346CrossRef Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346CrossRef
Zurück zum Zitat Harada T, Goda N, Ogawa T, Ito M, Toyoda H, Sadato N, Komatsu H (2009) Distribution of colour-selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 30:1960–1970CrossRef Harada T, Goda N, Ogawa T, Ito M, Toyoda H, Sadato N, Komatsu H (2009) Distribution of colour-selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 30:1960–1970CrossRef
Zurück zum Zitat Kanwisher N, McDermott J, Chun MM (1997) The Fusiform face area: A module in human extrastriate cortex specialized for face perception. J Neurosci 117:4302–4311CrossRef Kanwisher N, McDermott J, Chun MM (1997) The Fusiform face area: A module in human extrastriate cortex specialized for face perception. J Neurosci 117:4302–4311CrossRef
Zurück zum Zitat Komatsu H, Goda N (2018) Neural mechanisms of material perception: Quest on Shitsukan. Neuroscience 392:329–347CrossRef Komatsu H, Goda N (2018) Neural mechanisms of material perception: Quest on Shitsukan. Neuroscience 392:329–347CrossRef
Zurück zum Zitat Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16:1870–1878CrossRef Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16:1870–1878CrossRef
Zurück zum Zitat Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621CrossRef Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621CrossRef
Zurück zum Zitat Miyakawa N, Banno T, Abe H, Tani T, Suzuki W, Ichinohe N (2017) Representation of glossy material surface in ventral superior temporal sulcal area of common marmosets. Front Neural Circuits 11:17CrossRef Miyakawa N, Banno T, Abe H, Tani T, Suzuki W, Ichinohe N (2017) Representation of glossy material surface in ventral superior temporal sulcal area of common marmosets. Front Neural Circuits 11:17CrossRef
Zurück zum Zitat Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359CrossRef Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359CrossRef
Zurück zum Zitat Motoyoshi I, Nishida S, Sharan L, Adelson EH (2007) Image statistics and the perception of surface qualities. Nature 447:206–209CrossRef Motoyoshi I, Nishida S, Sharan L, Adelson EH (2007) Image statistics and the perception of surface qualities. Nature 447:206–209CrossRef
Zurück zum Zitat Namima T, Yasuda M, Banno T, Okazawa G, Komatsu H (2014) Effects of luminance contrast on the color selectivity of neurons in the macaque area v4 and inferior temporal cortex. J Neurosci 34:14934–14947CrossRef Namima T, Yasuda M, Banno T, Okazawa G, Komatsu H (2014) Effects of luminance contrast on the color selectivity of neurons in the macaque area v4 and inferior temporal cortex. J Neurosci 34:14934–14947CrossRef
Zurück zum Zitat Nelissen K, Joly O, Durand JB, Todd JT, Vanduffel W, Orban GA (2009) The extraction of depth structure from shading and texture in the macaque brain. PLoS ONE 4:e8306CrossRef Nelissen K, Joly O, Durand JB, Todd JT, Vanduffel W, Orban GA (2009) The extraction of depth structure from shading and texture in the macaque brain. PLoS ONE 4:e8306CrossRef
Zurück zum Zitat Nishio A, Goda N, Komatsu H (2012) Neural selectivity and representation of gloss in the monkey inferior temporal cortex. J Neurosci 32:10780–10793CrossRef Nishio A, Goda N, Komatsu H (2012) Neural selectivity and representation of gloss in the monkey inferior temporal cortex. J Neurosci 32:10780–10793CrossRef
Zurück zum Zitat Nishio A, Shimokawa T, Goda N, Komatsu H (2014) Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex. J Neurosci 34:11143–11151CrossRef Nishio A, Shimokawa T, Goda N, Komatsu H (2014) Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex. J Neurosci 34:11143–11151CrossRef
Zurück zum Zitat Okazawa G, Goda N, Komatsu H (2012) Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI. Neuroimage 63:1321–1333CrossRef Okazawa G, Goda N, Komatsu H (2012) Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI. Neuroimage 63:1321–1333CrossRef
Zurück zum Zitat Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: A functional MRI study. Proc Natl Acad Sci 102:6996–7001CrossRef Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: A functional MRI study. Proc Natl Acad Sci 102:6996–7001CrossRef
Zurück zum Zitat Rajalingham R, DiCarlo JJ (2019) Reversible Inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. Neuron 102:493–505CrossRef Rajalingham R, DiCarlo JJ (2019) Reversible Inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. Neuron 102:493–505CrossRef
Zurück zum Zitat Rajimehr R, Devaney KJ, Bilenko NY, Young JC, Tootell RB (2011) The “parahippocampal place area” responds preferentially to high spatial frequencies in humans and monkeys. PLoS Biol 9:e1000608CrossRef Rajimehr R, Devaney KJ, Bilenko NY, Young JC, Tootell RB (2011) The “parahippocampal place area” responds preferentially to high spatial frequencies in humans and monkeys. PLoS Biol 9:e1000608CrossRef
Zurück zum Zitat Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218CrossRef Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218CrossRef
Zurück zum Zitat Sawayama M, Nishida S (2018) Material and shape perception based on two types of intensity gradient information. PLoS Comput Biol 14:e1006061CrossRef Sawayama M, Nishida S (2018) Material and shape perception based on two types of intensity gradient information. PLoS Comput Biol 14:e1006061CrossRef
Zurück zum Zitat Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139CrossRef Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139CrossRef
Zurück zum Zitat Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995CrossRef Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995CrossRef
Zurück zum Zitat Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674CrossRef Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674CrossRef
Zurück zum Zitat Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci U S A 105:19514–19519CrossRef Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci U S A 105:19514–19519CrossRef
Zurück zum Zitat Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Analysis of Visual Behavior, ed by Ingle DG. Cambridge, MA: MIT Press, p. 549–586. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Analysis of Visual Behavior, ed by Ingle DG. Cambridge, MA: MIT Press, p. 549–586.
Zurück zum Zitat Verhoef BE, Bohon KS, Conway BR (2015) Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field. J Neurosci 35:6952–6968CrossRef Verhoef BE, Bohon KS, Conway BR (2015) Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field. J Neurosci 35:6952–6968CrossRef
Zurück zum Zitat Wada A, Sakano Y, Ando H (2014) Human cortical areas involved in perception of surface glossiness. Neuroimage 98:243–257CrossRef Wada A, Sakano Y, Ando H (2014) Human cortical areas involved in perception of surface glossiness. Neuroimage 98:243–257CrossRef
Zurück zum Zitat Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649CrossRef Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649CrossRef
Metadaten
Titel
Structure and function of neural circuit related to gloss perception in the macaque inferior temporal cortex: a case report
verfasst von
Hidehiko Komatsu
Akiko Nishio
Noritaka Ichinohe
Naokazu Goda
Publikationsdatum
22.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02324-6

Weitere Artikel der Ausgabe 9/2021

Brain Structure and Function 9/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.