Skip to main content
Erschienen in: Critical Care 1/2019

Open Access 01.12.2019 | Research

The effects and safety of vasopressin receptor agonists in patients with septic shock: a meta-analysis and trial sequential analysis

verfasst von: Libing Jiang, Yi Sheng, Xia Feng, Jing Wu

Erschienen in: Critical Care | Ausgabe 1/2019

Abstract

Background

The aim of this study was to evaluate the effects and safety of vasopressin receptor agonists in patients with septic shock.

Methods

PubMed, EMBASE, and Cochrane library were searched for randomized controlled trials evaluating the effects of vasopressin receptor agonists in septic shock patients. Two reviewers performed literature selection, data extraction, and quality evaluation independently. The primary outcome was mortality. And secondary outcomes included intensive care unit (ICU) length of stay, duration of mechanical ventilation, and incidence of adverse events. In addition, a trial sequential analysis (TSA) was performed.

Results

Twenty studies were eligible for meta-analysis. The results showed vasopressin receptor agonists use was associated with reduced mortality (relative risk (RR) 0.92; 95% confidence interval (CI) 0.84 to 0.99; I2 = 0%). Nevertheless, they had no significant effects on ICU length of stay (mean deviation (MD) − 0.08, 95% CI, − 0.68 to 0.52, I2 = 0%) and duration of mechanical ventilation (MD − 0.58, 95% CI − 1.47 to 0.31, I2 = 57%). Additionally, there was no significant difference in total adverse events between two groups (RR 1.28, 95% CI 0.87 to 1.90, I2 = 57%), but vasopressin receptor agonists administration could significantly increase the risk of digital ischemia (RR 4.85, 95% CI 2.81 to 8.39, I2 = 26%). Finally, there was no statistical difference of cardiovascular events (RR 0.91, 95% CI 0.53 to 1.57, I2 = 1%), arrhythmia (0.77, 95% CI 0.48 to 1.23, I2 = 23%), mesenteric ischemia (0.83, 95% CI 0.44 to 1.55, I2 = 0%), diarrhea (2.47, 95% CI 0.77 to 7.96, I2 = 49%), cerebrovascular events (1.36, 95% CI 0.18 to 10.54, I2 = 0%), and hyponatremia (1.47, 95% CI 0.84 to 2.55, I2 = 0%) between two groups. Egger’s test showed there was no significant publication bias among studies (P = 0.36).

Conclusions

The use of vasopressin might result in reduced mortality in patients with septic shock. An increased risk of digital ischemia must be taken into account.

Background

Septic shock is the leading cause of death in intensive care units. It is reported that the mortality rate of these patients can be as high as 30–60% [13]. Maintaining effective blood pressure is important for these patients [4]. Vasopressors are often used to reach a target mean arterial pressure (MAP), after adequate fluid resuscitation. Catecholamines, such as norepinephrine (NE), are still the first-line drugs. However, high dose of catecholamines may be associated with a higher risk of complications, including myocardial ischemia, decreased cardiac output, arrhythmias, increased tissue oxygen consumption, and pulmonary hypertension [4, 5].
Relative vasopressin deficiency often occurs in septic shock patients [6, 7]. Some pre-clinical studies showed exogenous administration of vasopressin could increase the vascular tone and improve blood pressure [8]. Several clinical studies also reported early concomitant vasopressin, and norepinephrine therapy could reduce the dose of NE, shorten the time of achieving target mean arterial pressure, and reduce catecholamine-related complications [9, 10]. Therefore, the newest Surviving Sepsis guideline suggests vasopressin could be used to raise blood pressure to target mean arterial pressure or decrease norepinephrine dosage with weak recommendations [11]. However, no consensus has been made regarding the effects of vasopressin receptor agonists on patient-centered outcomes, especially mortality. The aim of this study is to explore the effects and safety of vasopressin receptor agonists in patients with septic shock.

Methods

The present meta-analysis was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA, http://​www.​prisma-statement.​org/​).

Registration and protocol

This meta-analysis was registered on PROSPERO (CRD42018104027).

Inclusion criteria

Patients: Adult septic shock patients
Intervention: Vasopressin or its analogues (e.g., terlipressin, selepressin) with or without concomitant catecholamines, irrespective of dose and duration
Comparison: Catecholamines use alone, irrespective of dose and duration
Outcomes: The primary endpoint was 28/30-day mortality, and hospital mortality and ICU mortality were equal for this analysis module. The secondary endpoints included ICU length of stay, duration of mechanical ventilation, and adverse events (total adverse events, digital ischemia, cardiovascular events, arrhythmia, mesenteric ischemia, diarrhea, cerebrovascular events, and hyponatremia).

Data source and literature search

PubMed, EMBASE, and Cochrane library were searched from inception to July 31, 2018. The detailed search strategy is showed in Additional file 1: Table S1. The bibliography of relevant articles was searched for additional articles. In addition, https://​clinicaltrials.​gov/​ was searched for ongoing or unpublished studies.

Study selection and data extraction

Two reviewers performed literature selection independently. Firstly, we excluded duplicates through reference management tool. Then, we exclude clearly non-relevant articles by reading titles and abstracts. Finally, we decided the eligibility of each article by full-text reading.
The same two reviewers did the data extraction independently using a pre-defined datasheet. And we recorded basic information of each eligible study, characteristics of included patients, interventions, comparisons, endpoints, and other items which were essential for quality evaluation. Any discrepancy was solved by discussion or consulting with the third reviewer.

Study quality evaluation

Two reviewers evaluated the quality of each included study based on the following domains: sequence generation, allocation concealment, blinding of patients and personnel, blinding of outcome assessors, incomplete outcome data, and selective reporting. Each domain is classified as low risk, unclear risk, and high risk. Any discrepancy was solved by discussion or consulting with the third reviewer.

Statistical analysis

Relative risk (RR) was used for dichotomous data, and mean difference (MD) was used for continuous data. The heterogeneity between studies was assessed using the I2 test and chi-square test. P < 0.1 and I2 ≥ 50% indicated significant heterogeneity, and the random effects model was used. Otherwise, the fixed effects model was used. A two-sided P value < 0.05 was considered statistically significant. Publication bias was assessed by funnel plot and Egger’s test quantitatively. All statistical analyses were performed using STATA 12.0 software (SERIAL NO.40120519635) and RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark).
In the present study, we used the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) to evaluate the quality of evidence. And evidences were categorized as high, moderate, low, and very low, according to two group factors (factors that can reduce the quality of the evidence and factors that can increase the quality of the evidence). This process was performed on GRADEpro GDT (https://​gradepro.​org/​).
In the present study, we performed the trial sequential analysis (TSA) to decrease the risks of random errors due to sparse data and repetitive testing and calculate the optimal information size for this meta-analysis. In addition to the optimal information size, an adjusted boundary line for favoring vasopressin or its analogue use and an adjusted boundary line for favoring catecholamine use alone were generated to decide whether the meta-analysis should be terminated early or the confidence interval. In this TSA model, type I error was set at 5% and type II error was set at 20%. A 10% relative risk reduction (RRR) and baseline mortality calculated from the actual meta-analyses were used to calculate the optimal information size. TSA was performed using the trial sequential analysis v.0.9.5.10 beta (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark, available from www.​ctu.​dk/​tsa).

Results

Literature selection process

After excluding 230 duplicates, 1887 studies from 2117 hits were chosen for further evaluation. Through reading title and abstract, 1855 studies were excluded and 32 studies were potentially eligible for evaluation by reading the full text. Finally, 20 studies were included for meta-analysis [1231]. Figure 1 shows the process of literature selection and reasons for study exclusion. Detailed information of excluded studies and ongoing studies is presented in Additional file 1: Table S2, S3.

The characteristics and quality of the included studies

Twenty studies [1231] with 2250 septic shock patients who received vasopressin receptor agonists and 2281 septic shock patients who received catecholamine alone were eligible. Patients in 9 studies and 11 studies received vasopressin [12, 17, 1921, 2831] and vasopressin’s analogues (pituitrin 1 [14], selepressin 1 [23], terlipressin 9 [13, 15, 16, 18, 22, 2427]), respectively. Among them, four studies [12, 17, 18, 21] were published in abstract and relevant data were obtained from the study by McIntyre et al. [32]. Detailed information is showed in Table 1, and quality evaluation of all included studies is showed in Additional file 1: Figures S1, S2.
Table 1
The characteristics of included studies
Study
Year
No. of patients
Patients
Intervention
Comparison
Outcome
Malay
1999
10
Septic shock
Vasopressin 0.04 U/min
NE
24 h
Albanese
2005
20
Septic shock
Terlipressin: one bolus of 1 mg and a second bolus of 1 mg was given if the MAP < 65 mmHg after 20 mins
NE was started at a dose of 0.3 μg/kg/min, followed by 0.3 μg/kg/min increments at 4-min intervals to raise MAP to 65 to 75 mmHg
Hospital
Lauzier
2006
23
Septic shock
Arginine-vasopressin 0.04–0.20 U/min
NE 0.1–2.8 μg/kg/min
ICU
Russell
2008
799
Septic shock
Vasopressin 0.01–0.03 U/min or at clinician’s discretion
NE 5 to 15 mg/min or at clinician’s discretion
90 days
Acevedo
2009
24
Septic shock and cirrhosis
Terlipressin 1–2 mg/4 h plus alpha-adrenergic drugs
Alpha-adrenergic drugs alone
Hospital
Morelli
2009
45
Septic shock
Terlipressin 1.3 μg/kg/h
Vasopressin 0.03 U/min
NE 15 μg/min
ICU
Han
2012
139
Septic shock
Pituitrin 1.0–2.5 U/h
Dopamine or NE 2–20 μg/kg/h
28 days
Svoboda
2012
30
Septic shock
Terlipressin 4 mg/24 h for 72 h plus open-label norepinephrine
NE > 0.6 μg/kg/min for more than 24 h
28 days
Fonseca Ruiz
2013
30
Septic shock
Vasopressin 0.01–0.04 U/min plus NE
NE
28 days
Hua
2013
32
Septic shock patients with ARDS
Terlipressin 1.3 mg/kg/h
Dopamine < 20 mg/kg/min
28 days
Oliveira
2014
387
Septic shock
Vasopressin 0.01–0.03 U/min with low doses of norepinephrine
NE 0.05–2.0 μg/kg/min
28 days
Barzegar
2016
30
Septic shock
Vasopressin 0.03 μg/min plus NE
NE: infusion adjusted to MAP ≥ 65 mmHg
28 days
Choudhury
2016
84
Cirrhotics with septic shock
Terlipressin 2–8 mg over 24 h
NE 7.5–60 μg/min
28 days
Clem
2016
82
Septic shock
Vasopressin 0.04 U/min plus NE with 0.05–0.5 μg/kg/min
NE 0.05 to 0.5 μg/kg/min
28 days
Gordon
2016
408
Septic shock
Vasopressin: titrated up to 0.06 U/min to maintain the MAP 65 to 75 mmHg
NE: titrated up to 12 μg/min to maintain the MAP 65 to 75 mmHg
28 days
Capoletto
2017
250
Septic shock and cancer
Vasopressin
NE
90 days
Chen
2017
57
Septic shock patients with ARDS
Terlipressin 0.01–0.04 U/min to maintain MAP between 65 and 75 mmHg, if necessary plus NE
NE > 1 μg/min to maintain MAP between 65 and 75 mmHg
28 days
Prakash
2017
184
Cirrhosis with septic shock.
Terlipressin 2 mg/24 h and 3.75–30 μg/min of NE as needed to maintain MAP > 65 mmHg
NE 7.5–60 μg/min
30 days
Russell
2017
48
Septic shock
Selepressin 1.25, 2.5, and 3.75 ng/kg/min until shock resolution or a maximum of 7 days
Placebo
28 days
Liu
2018
535
Septic shock
Terlipressin 20–160 μg/h
NE 4–30 μg/min
28 days
No number, NE norepinephrine, ICU intensive care unit, ARDS acute respiratory distress syndrome

Meta-analysis

The primary endpoint: mortality

Twenty studies were included for mortality analysis [1231], and the combined RR was 0.92 (95% confidence interval (CI) 0.84 to 0.99, P = 0.03, I2 = 0%) (Fig. 2). The quality of evidence is presented in Additional file 1: Table S4. The results of TSA indicated the optimal information size was 4103 patients for mortality and more high-quality RCTs are needed, although z curve had crossed the general boundary line, but it did not cross any adjusted boundary line favoring the intervention group or control group. And the adjusted RR was 0.92 (95% CI 0.84 to 0.99, P = 0.03, I2 = 0%), based on 10% RRR (from a baseline event rate of 43%) (Fig. 3).

Post hoc sensitive and subgroup analysis

Firstly, the combined RR was 0.95 (95% CI 0.86–1.05, P = 0.30, I2 = 0%) [1316, 19, 20, 2231] for studies published in full text and 0.85 (95% CI 0.74–0.98, P = 0.02, I2 = 23%) [12, 17, 18, 21] for studies published in abstract. In addition, after removing three studies that did not report 28/30-day mortality, the combined RR was 0.92 (95% CI 0.83–1.00, P = 0.06, I2 = 0%) [1215, 1719, 2129, 31]. Thirdly, the combined RR was 0.94 (95% CI 0.84–1.05, P = 0.70, I2 = 0%) [12, 17, 1921, 2831] for patients who received vasopressin and 0.88 (95% CI 0.78–0.99, P = 0.04, I2 = 0%) [1316, 18, 2227] for patients who received its analogues (Fig. 2). Finally, we performed another subgroup analysis based on different diagnoses. In patients with cirrhosis, the combined RR was 0.73 (95% CI 0.61–0.88, P = 0.001, I2 = 23%), and in other patients, the combined RR was 0.95 (95% CI 0.87–1.04, P = 0.24, I2 = 0%).

The secondary endpoints

ICU length of stay

Ten studies reported ICU length of stay [12, 1416, 19, 22, 24, 27, 28, 31]. The results showed there were no effects of vasopressin receptor agonists on ICU length of stay (MD − 0.08, 95% CI − 0.68–0.52, P = 0.79, I2 = 0%) (Fig. 4).

Duration of mechanical ventilation

Five studies were eligible for analysis of duration of mechanical ventilation [14, 15, 19, 24, 27]. The combined MD was − 0.58 (95% CI − 1.47–0.31, P = 0.20, I2 = 57%) (Fig. 5). The results showed vasopressin receptor agonist administration did not significantly affect the duration of mechanical ventilation. The result of the study by Han was different from the other studies [14]. A sensitive analysis was performed by removing the study by Han; the combined MD was − 1.05 (95% CI − 1.77 to − 0.32, P = 0.005, I2 = 0%).

Adverse events

Total adverse events

Eleven studies were included in the analysis of total adverse events [16, 1923, 2731]. The combined RR was 1.28 (95% CI 0.87–1.90, P = 0.21, I2 = 57%) (Fig. 6). The results were driven by the study by Liu et al. [27], which carried 18.3% of the weight. A sensitive analysis was performed by removing the study by Liu et al., and the combined RR was 1.11 (95% CI 0.86–1.43, P = 0.44, I2 = 10%).

Digital ischemia

Eight studies and 1964 patients were eligible for the analysis [19, 22, 23, 25, 2729, 31]. The combined RR was 4.85 (95% CI 2.81–8.39, P < 0.001, I2 = 26%) (Fig. 7), indicating that the use of vasopressin receptor agonists was associated with more digital ischemia events. A sensitive analysis was performed by removing the study by Liu et al. [27], due to its results that were significantly different from the other studies. And the combined RR was 2.79 (95% CI 1.54–5.05, P < 0.001, I2 = 0%), supporting the original conclusion.

Other adverse events

There were no effects of vasopressin receptor agonists on cardiovascular events [19, 23, 27, 28, 30, 31], arrhythmia [16, 19, 2123, 27, 28, 31], mesenteric ischemia [19, 23, 27, 31], diarrhea [23, 27, 31], cerebrovascular events [23, 31], and hyponatremia [27, 28, 31]. And the combined RR was 0.91 (95% CI 0.53–1.57, P = 0.73, I2 = 1%) (Additional file 1: Figure S3), 0.77 (95% CI 0.48–1.23, P = 0.28, I2 = 23%) (Additional file 1: Figure S4), 0.83 (95% CI 0.44–1.55, P = 0.55, I2 = 0%) (Additional file 1: Figure S5), 2.47 (95% CI 0.77–7.96, P = 0.13, I2 = 49%) (Additional file 1: Figure S6), 1.36 (95% CI 0.18–10.54, P = 0.77, I2 = 0%) (Additional file 1: Figure S7), and 1.47 (95% CI 0.84–2.55, P = 0.18, I2 = 0%) (Additional file 1: Figure S8), respectively. Additional subgroup analyses are showed in Table 2.
Table 2
Subgroup analysis based on medication type
Indicator
Vasopressin
Vasopressin’s analogues
ICU length of stay (MD)
− 0.17 (95% CI − 0.98–0.63, P = 0.67, I2 = 0%)
0.03 (95% CI − 0.87–0.93, P = 0.94, I2 = 24%)
Duration of MV (MD)
− 1.00 (95% CI −2.39-0.39, P = 0.16)*
− 0.50 (95% CI − 1.57–0.57, P = 0.36, I2 = 63%)
Total adverse events (RR)
1.13 (95% CI 0.83–1.53, P = 0.43, I2 = 0%)
1.20 (95% CI 0.52–2.74, P = 0.67, I2 = 79%)
Digital ischemia (RR)
3.33 (95% CI 1.39–7.95, P < 0.001, I2 = 0%)
6.06 (95% CI 2.97–12.37, P < 0.001, I2 = 68%)
Cardiovascular events (RR)
0.93 (95% CI 0.51–1.69, P = 0.80, I2 = 27%)
0.84 (95% CI 0.24–2.99, P = 0.79, I2 = 0%)
Arrhythmia (RR)
0.99 (95% CI 0.51–1.91, P = 0.98, I2 = 15%)
0.57 (95% CI 0.29–1.15, P = 0.12, I2 = 35%)
Mesenteric ischemia (RR)
0.77 (95% CI 0.38–1.53, P = 0.45, I2 = 0%)
1.22 (95% CI 0.26–5.64, P = 0.80, I2 = 42%)
Diarrhea (RR)
0.98 (95% CI 0.06–15.58)*
1.64 (95% CI 0.05–54.19, P = 0.78, I2 = 71%)
Cerebrovascular events (RR)
0.98 (95% CI 0.06–15.58, P = 0.99)*
2.00 (95% CI 0.09–46.68, P = 0.67)*
Hyponatremia (RR)
2.31 (95% CI 0.35–15.09, P = 0.38, I2 = 0%)
1.39 (95% CI 0.78–2.49, P = 0.26)*
RR relative risk, MD mean difference, CI confidence interval, ICU intensive care unit, MV mechanical ventilation
*Only one study

Publication bias

Publication bias was assessed via funnel plots and Egger’s test (Additional file 1: Figure S9). The results of Egger’s test indicated there was no significant publication bias among the included studies (P = 0.39).

Discussion

In this meta-analysis, the authors evaluated the effects and safety of vasopressin receptor agonists in patients with septic shock. The results showed vasopressin receptor agonist administration might be associated with increased survival in septic shock patients and further studies are required. However, their use could increase the risk of digital ischemia. There were no effects on ICU length of stay, duration of mechanical ventilation, cardiovascular ischemia events, arrhythmia, cerebrovascular ischemia events, mesenteric ischemia, diarrhea, and hypomania.
Generally, catecholamines, especially norepinephrine, are used as the first-line vasopressors in septic shock patients [3, 3335]. However, with a better understanding of the pathophysiology of septic shock and growing attention to the side effects of catecholamines, alternative vasopressors are searched. Vasopressin is an endogenous hormone, and the supraoptic and paraventricular hypothalamic nuclei are the principal sources [36, 37]. Plasma vasopressin level in normal subjects does not exceed 4 pg/ml. But in patients with septic shock, the level of plasma vasopressin is reported to be abnormally low [3639]. Moreover, exogenously administered vasopressin could increase the responsiveness to infused catecholamines and reduce the dose of catecholamines [4042].
Vasopressin in Septic Shock Trial (VASST) failed to find a statistical difference in short-term and long-term mortality between septic shock patients who received vasopressin and norepinephrine [31]. In the present meta-analysis, we find the use of vasopressin receptor agonists is associated with increased survival when compared with those that received catecholamines alone, and this positive association may be more obvious in patients with cirrhosis who received terlipressin. Terlipressin, a synthetic analogue of vasopressin with a longer half-life, acts via V1 receptors on arteriolar smooth muscle cells. Terlipressin is generally used for hepatorenal syndrome and esophageal variceal bleeding [43, 44]. Previous small studies found a continuous infusion of terlipressin might be more effective than vasopressin in restoring hemodynamic status with less adverse events [16, 25, 45]. In the study by Choudhury et al. [22], the authors even found terlipressin is effective in improving survival of cirrhotics with septic shock, and they suggested early introduction of terlipressin rather than after failure of monotherapy. This is in agreement with the results of our study. The survival advantage of terlipressin is more obvious in cirrhotics with septic shock perhaps because it can reduce the portal pressure and result in redistribution of splanchnic blood. Additionally, terlipressin use may be useful in renal function recovery [22]. Selepressin, a more selective V1a receptor agonist, was reported to be effective in the improvement of hemodynamics in septic shock animal models and decreasing pulmonary capillary leak when used early or as first-line agent [4648]. One small phase IIb human study reported selepressin was safe and effective in septic shock patients [49].
Several meta-analyses reached conflict conclusions [32, 5054]. Possible reasons include different inclusion criteria. In this present study, both studies in full text and abstract were eligible. In order to reduce patient heterogeneity, only septic shock patients were included in the present study. Additionally, different endpoints and statistical methods may also account for the inconsistent outcomes.

The limitation of this study

Several limitations of the present study should be concerned. Firstly, although there was no statistical significance of Egger’s test, the possibility of publication bias cannot be completely excluded. Secondly, some endpoints were not reported in studies, which were published in the abstract. Thirdly, ICU mortality, 24 h mortality, hospital mortality, and 28/30-day mortality were regarded to be equal in the present study, and this might bias the outcome. Finally, long-term endpoints, like 90-day mortality, and some surrogate outcomes were not reported in the present study.

The implication for clinical practice and further studies

The results of this meta-analysis showed vasopressin receptor agonists improved survival with a higher risk of digital ischemia. The following reasons may account for the higher incidence of digital ischemia in the study by Liu et al. Firstly, 94% of patients with digital ischemia in their study received terlipressin and open-label noradrenaline. Furthermore, the maximum dose of terlipressin used in their study was higher than that reported in other studies [27]. However, no patient needed surgical interventions for digital ischemia. Another concern of using vasopressin in patients with septic shock is its effects on cardiac output and oxygen delivery. Vasopressin has previously been reported to be associated with a reduction of cardiac output [55], although this association is not found in other studies [16, 56]. Factors including different infusion method and dose of vasopressin, different period of fluid resuscitation, and additional medication use (inotropic infusion) may partially explain the diverse results [56]. Neto et al., in their meta-analysis, pointed that vasopressin use did not result in decreased cardiac output, except for high dose of terlipressin [52]. Additionally, Gordon et al. and Neto et al., in their studies, found vasopressin administration was associated with a significant decrease in heart rate, and this may play important role in effect on the cardiac output of vasopressin [52, 56]. In most published studies, patients in the intervention group received both vasopressin and open-label catecholamines, and this may bias the outcome. And more head-to-head comparative randomized evidence is required. The VASST study found the survival advantage of concomitant vasopressin and norepinephrine therapy was obvious in patients with less severe shock [57]. In another study, lactate concentration was reported to be associated with the hemodynamic response of vasopressin [58]. In the study by Nascente et al., they found vasopressin administration is likely to improve microcirculation in septic shock patients whose baseline noradrenaline dose was higher than 0.38 μg/kg/min [59]. Therefore, uncovering specific subgroups of septic patients who are most likely to respond to early initiation of vasopressin is important [58]. A post hoc analysis pointed that the adjunctive use of corticosteroids could increase the survival benefit of vasopressin. And in these patients, the serum vasopressin concentration significantly increased [60]. Although this association did not been observed in the following randomized controlled trial [19], adjunctive treatments with vasopressin in septic shock patients are another point requiring more studies. Moreover, the best dose, time of use [10, 6164], infusion method (continuous or intermittent), and discontinuation strategies are also a hot topic and remain unclear [65].

Conclusions

The use of vasopressin might result in reduced mortality in patients with septic shock. An increased risk of digital ischemia must be taken into account, and more studies are required.

Acknowledgements

The authors thank Yongan Xu, Emergency department, the second affiliated hospital, Zhejiang University School of Medicine.

Funding

Zhejiang medical and health science and technology project (2017ky372) and Hangzhou yuhang district medical and health research key subject construction (2016009) supported this work.

Availability of data and materials

All data generated or analyzed during the present study are included in this published article and its supplementary information files.
Not applicable
Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Machado FR, Cavalcanti AB, Bozza FA, Ferreira EM, Angotti Carrara FS, Sousa JL, Caixeta N, Salomao R, Angus DC, Pontes Azevedo LC. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. Lancet Infect Dis. 2017;17(11):1180–9.PubMed Machado FR, Cavalcanti AB, Bozza FA, Ferreira EM, Angotti Carrara FS, Sousa JL, Caixeta N, Salomao R, Angus DC, Pontes Azevedo LC. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. Lancet Infect Dis. 2017;17(11):1180–9.PubMed
2.
Zurück zum Zitat SepNet Critical Care Trials Group. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med. 2016;42(12):1980-9. SepNet Critical Care Trials Group. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med. 2016;42(12):1980-9.
3.
Zurück zum Zitat Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalenka A, Forst H, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.PubMed Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalenka A, Forst H, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.PubMed
4.
Zurück zum Zitat Scheeren TWL, Bakker J, De Backer D, Annane D, Asfar P, Boerma EC, Cecconi M, Dubin A, Dunser MW, Duranteau J, et al. Current use of vasopressors in septic shock. Ann Intensive Care. 2019;9(1):20. Scheeren TWL, Bakker J, De Backer D, Annane D, Asfar P, Boerma EC, Cecconi M, Dubin A, Dunser MW, Duranteau J, et al. Current use of vasopressors in septic shock. Ann Intensive Care. 2019;9(1):20.
5.
Zurück zum Zitat Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41(1):143–50.PubMed Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41(1):143–50.PubMed
6.
Zurück zum Zitat Russell JA. Vasopressin in vasodilatory and septic shock. Curr Opin Crit Care. 2007;13(4):383-91. Russell JA. Vasopressin in vasodilatory and septic shock. Curr Opin Crit Care. 2007;13(4):383-91.
7.
Zurück zum Zitat Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31(6):1752–8.PubMed Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31(6):1752–8.PubMed
8.
Zurück zum Zitat Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, DAlessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–5.PubMed Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, DAlessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–5.PubMed
9.
Zurück zum Zitat De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.PubMed De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.PubMed
10.
Zurück zum Zitat Hammond DA, Ficek OA, Painter JT, McCain K, Cullen J, Brotherton AL, Kakkera K, Chopra D, Meena N. Prospective open-label trial of early concomitant vasopressin and norepinephrine therapy versus initial norepinephrine monotherapy in septic shock. Pharmacotherapy. 2018;38(5):531–8.PubMed Hammond DA, Ficek OA, Painter JT, McCain K, Cullen J, Brotherton AL, Kakkera K, Chopra D, Meena N. Prospective open-label trial of early concomitant vasopressin and norepinephrine therapy versus initial norepinephrine monotherapy in septic shock. Pharmacotherapy. 2018;38(5):531–8.PubMed
11.
Zurück zum Zitat Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.PubMed Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.PubMed
12.
Zurück zum Zitat Capoletto C, Almeida J, Ferrari G, Fukushima J, Nakamura R, Risk S, Osawa E, Park C, Oliveira G, Galas F, et al. 37th International Symposium on Intensive Care and Emergency Medicine (part 2 of 3) abstracts. Critical Care. 2017;21(Suppl 1):P168 Capoletto C, Almeida J, Ferrari G, Fukushima J, Nakamura R, Risk S, Osawa E, Park C, Oliveira G, Galas F, et al. 37th International Symposium on Intensive Care and Emergency Medicine (part 2 of 3) abstracts. Critical Care. 2017;21(Suppl 1):P168
13.
Zurück zum Zitat Acevedo JG, Fernandez J, Escorsell A, Mas A, Gines P, Arroyo V. Clinical efficacy and safety of terlipressin administration in cirrhotic patients with septic shock. J Hepatol. 2009;50:S73. Acevedo JG, Fernandez J, Escorsell A, Mas A, Gines P, Arroyo V. Clinical efficacy and safety of terlipressin administration in cirrhotic patients with septic shock. J Hepatol. 2009;50:S73.
14.
Zurück zum Zitat Han XD, Sun H, Huang XY, Zhang SY, Wang YD, Ren K, Li F. A clinical study of pituitrin versus norepinephrine in the treatment of patients with septic shock. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2012;24(1):33–7.PubMed Han XD, Sun H, Huang XY, Zhang SY, Wang YD, Ren K, Li F. A clinical study of pituitrin versus norepinephrine in the treatment of patients with septic shock. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2012;24(1):33–7.PubMed
15.
Zurück zum Zitat Chen Z, Zhou P, Lu Y, Yang C. Comparison of effect of norepinephrine and terlipressin on patients with ARDS combined with septic shock: a prospective single-blind randomized controlled trial. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(2):111–6.PubMed Chen Z, Zhou P, Lu Y, Yang C. Comparison of effect of norepinephrine and terlipressin on patients with ARDS combined with septic shock: a prospective single-blind randomized controlled trial. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(2):111–6.PubMed
16.
Zurück zum Zitat Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Cecchini V, Bachetoni A, D'Alessandro M, Van Aken H, Pietropaoli P, et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13(4):R130.PubMedPubMedCentral Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Cecchini V, Bachetoni A, D'Alessandro M, Van Aken H, Pietropaoli P, et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13(4):R130.PubMedPubMedCentral
17.
Zurück zum Zitat Oliveira S, Dessa F, Rocha C, Oliveira F. Early vasopressin application in shock study. Crit Care. 2014;18(1):P158.PubMedCentral Oliveira S, Dessa F, Rocha C, Oliveira F. Early vasopressin application in shock study. Crit Care. 2014;18(1):P158.PubMedCentral
18.
Zurück zum Zitat Prakash V, Choudhury AK, Sarin SK. Early introduction of a combination of low dose terlipressin and noradrenaline as vasopressors is superior to hig dose noradrenaline alone in patients of cirrhosis with septic shock (NCT02468063). The 68th Annual Meeting of the American Association for the Study of Liver Diseases: The Liver Meeting 2017. Hepatology. 2017;66(S1):1–1185. Prakash V, Choudhury AK, Sarin SK. Early introduction of a combination of low dose terlipressin and noradrenaline as vasopressors is superior to hig dose noradrenaline alone in patients of cirrhosis with septic shock (NCT02468063). The 68th Annual Meeting of the American Association for the Study of Liver Diseases: The Liver Meeting 2017. Hepatology. 2017;66(S1):1–1185.
19.
Zurück zum Zitat Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, Pogson DG, Aya HD, Anjum A, Frazier GJ, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock the VANISH randomized clinical trial. J Am Med Assoc. 2016;316(5):509–18. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, Pogson DG, Aya HD, Anjum A, Frazier GJ, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock the VANISH randomized clinical trial. J Am Med Assoc. 2016;316(5):509–18.
20.
Zurück zum Zitat Malay MB, Ashton RC Jr, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47(4):699–703 discussion 703-695.PubMed Malay MB, Ashton RC Jr, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47(4):699–703 discussion 703-695.PubMed
21.
Zurück zum Zitat Clem O, Painter J, Cullen J, McCain K, Kakkera K, Meena N, Hammond D. Norepinephrine and vasopressin vs norepinephrine alone for septic shock randomized controlled trial. Crit Care Med. 2016;44(12):413. Clem O, Painter J, Cullen J, McCain K, Kakkera K, Meena N, Hammond D. Norepinephrine and vasopressin vs norepinephrine alone for septic shock randomized controlled trial. Crit Care Med. 2016;44(12):413.
22.
Zurück zum Zitat Choudhury A, Kedarisetty CK, Vashishtha C, Saini D, Kumar S, Maiwall R, Sharma MK, Bhadoria AS, Kumar G, Joshi YK, et al. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. Liver Int. 2017;37(4):552–61.PubMed Choudhury A, Kedarisetty CK, Vashishtha C, Saini D, Kumar S, Maiwall R, Sharma MK, Bhadoria AS, Kumar G, Joshi YK, et al. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. Liver Int. 2017;37(4):552–61.PubMed
23.
Zurück zum Zitat Russell JA, Vincent JL, Kjolbye AL, Olsson H, Blemings A, Spapen H, Carl P, Laterre PF, Grundemar L. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Critical care (London, England). 2017;21(1):213. Russell JA, Vincent JL, Kjolbye AL, Olsson H, Blemings A, Spapen H, Carl P, Laterre PF, Grundemar L. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Critical care (London, England). 2017;21(1):213.
24.
Zurück zum Zitat Hua F, Wang X, Zhu L. Terlipressin decreases vascular endothelial growth factor expression and improves oxygenation in patients with acute respiratory distress syndrome and shock. The Journal of emergency medicine. 2013;44(2):434–9.PubMed Hua F, Wang X, Zhu L. Terlipressin decreases vascular endothelial growth factor expression and improves oxygenation in patients with acute respiratory distress syndrome and shock. The Journal of emergency medicine. 2013;44(2):434–9.PubMed
25.
Zurück zum Zitat Svoboda P, Scheer P, Kantorova I, Doubek J, Dudra J, Radvan M, Radvanova J. Terlipressin in the treatment of late phase catecholamine-resistant septic shock. Hepato-gastroenterology. 2012;59(116):1043–7.PubMed Svoboda P, Scheer P, Kantorova I, Doubek J, Dudra J, Radvan M, Radvanova J. Terlipressin in the treatment of late phase catecholamine-resistant septic shock. Hepato-gastroenterology. 2012;59(116):1043–7.PubMed
26.
Zurück zum Zitat Albanese J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med. 2005;33(9):1897–902.PubMed Albanese J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med. 2005;33(9):1897–902.PubMed
27.
Zurück zum Zitat Liu ZM, Chen J, Kou Q, Lin Q, Huang X, Tang Z, Kang Y, Li K, Zhou L, Song Q, et al. Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med. 2018;44(11):1816-25. Liu ZM, Chen J, Kou Q, Lin Q, Huang X, Tang Z, Kang Y, Li K, Zhou L, Song Q, et al. Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med. 2018;44(11):1816-25.
28.
Zurück zum Zitat Barzegar E, Ahmadi A, Mousavi S, Nouri M, Mojtahedzadeh M. The therapeutic role of vasopressin on improving lactate clearance during and after vasogenic shock: microcirculation, is it the black box? Acta medica Iranica. 2016;54(1):15–23.PubMed Barzegar E, Ahmadi A, Mousavi S, Nouri M, Mojtahedzadeh M. The therapeutic role of vasopressin on improving lactate clearance during and after vasogenic shock: microcirculation, is it the black box? Acta medica Iranica. 2016;54(1):15–23.PubMed
29.
Zurück zum Zitat Fonseca-Ruiz N, Lemos Cano A, Ortiz Carmona PD, Correa Aguirre M, Gómez Hernández PM, Osorio García C, Cuesta D, Molina Saldarriaga JF. Uso de vasopresina en pacientes con choque séptico refractario a catecolaminas. Acta Colombiana de Cuidado Intensivo. 2013;13(2):114-23. Fonseca-Ruiz N, Lemos Cano A, Ortiz Carmona PD, Correa Aguirre M, Gómez Hernández PM, Osorio García C, Cuesta D, Molina Saldarriaga JF. Uso de vasopresina en pacientes con choque séptico refractario a catecolaminas. Acta Colombiana de Cuidado Intensivo. 2013;13(2):114-23.
30.
Zurück zum Zitat Lauzier F, Levy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32(11):1782–9.PubMed Lauzier F, Levy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32(11):1782–9.PubMed
31.
Zurück zum Zitat Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMed Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMed
32.
Zurück zum Zitat McIntyre WF, Um KJ, Alhazzani W, Lengyel AP, Hajjar L, Gordon AC, Lamontagne F, Healey JS, Whitlock RP, Belley-Cote EP. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319(18):1889–900.PubMedPubMedCentral McIntyre WF, Um KJ, Alhazzani W, Lengyel AP, Hajjar L, Gordon AC, Lamontagne F, Healey JS, Whitlock RP, Belley-Cote EP. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319(18):1889–900.PubMedPubMedCentral
33.
Zurück zum Zitat Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28(8):2758–65.PubMed Martin C, Viviand X, Leone M, Thirion X. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28(8):2758–65.PubMed
34.
Zurück zum Zitat Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, Perez P, Meziani F. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36(12):2019–29.PubMed Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, Perez P, Meziani F. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36(12):2019–29.PubMed
35.
Zurück zum Zitat Schmittinger CA, Torgersen C, Luckner G, Schroder DCH, Lorenz I, Dunser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38(6):950–8.PubMed Schmittinger CA, Torgersen C, Luckner G, Schroder DCH, Lorenz I, Dunser MW. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38(6):950–8.PubMed
36.
Zurück zum Zitat Ba ZF, Chaudry IH. Role of estrogen receptor subtypes in estrogen-induced organ-specific vasorelaxation after trauma-hemorrhage. Am J Phys Heart Circ Phys. 2008;295(5):H2061–7. Ba ZF, Chaudry IH. Role of estrogen receptor subtypes in estrogen-induced organ-specific vasorelaxation after trauma-hemorrhage. Am J Phys Heart Circ Phys. 2008;295(5):H2061–7.
37.
Zurück zum Zitat Russell JA. Bench-to-bedside review: vasopressin in the management of septic shock. Critical Care (London, England). 2011;15(4):226. Russell JA. Bench-to-bedside review: vasopressin in the management of septic shock. Critical Care (London, England). 2011;15(4):226.
38.
Zurück zum Zitat Yang G, Li T, Xu J, Liu L. PKC plays an important mediated effect in arginine vasopressin induced restoration of vascular responsiveness and calcium sensitization following hemorrhagic shock in rats. Eur J Pharmacol. 2010;628(1–3):148–54.PubMed Yang G, Li T, Xu J, Liu L. PKC plays an important mediated effect in arginine vasopressin induced restoration of vascular responsiveness and calcium sensitization following hemorrhagic shock in rats. Eur J Pharmacol. 2010;628(1–3):148–54.PubMed
39.
Zurück zum Zitat O'Brien A, Clapp L, Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet (London, England). 2002;359(9313):1209–10. O'Brien A, Clapp L, Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet (London, England). 2002;359(9313):1209–10.
40.
Zurück zum Zitat Kopel T, Losser MR, Faivre V, Payen D. Systemic and hepatosplanchnic macro- and microcirculatory dose response to arginine vasopressin in endotoxic rabbits. Intensive Care Med. 2008;34(7):1313–20.PubMed Kopel T, Losser MR, Faivre V, Payen D. Systemic and hepatosplanchnic macro- and microcirculatory dose response to arginine vasopressin in endotoxic rabbits. Intensive Care Med. 2008;34(7):1313–20.PubMed
41.
Zurück zum Zitat Yang G, Liu L, Xu J, Li T. Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase. J Trauma. 2006;61(6):1336–42.PubMed Yang G, Liu L, Xu J, Li T. Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase. J Trauma. 2006;61(6):1336–42.PubMed
42.
Zurück zum Zitat Holmes CL, Walley KR. Vasopressin in the ICU. Curr Opin Crit Care. 2004;10(6):442–8.PubMed Holmes CL, Walley KR. Vasopressin in the ICU. Curr Opin Crit Care. 2004;10(6):442–8.PubMed
43.
Zurück zum Zitat Morelli A, Ertmer C, Pietropaoli P, Westphal M. Terlipressin: a promising vasoactive agent in hemodynamic support of septic shock. Expert Opin Pharmacother. 2009;10(15):2569–75.PubMed Morelli A, Ertmer C, Pietropaoli P, Westphal M. Terlipressin: a promising vasoactive agent in hemodynamic support of septic shock. Expert Opin Pharmacother. 2009;10(15):2569–75.PubMed
44.
Zurück zum Zitat Lange M, Ertmer C, Westphal M. Vasopressin vs. terlipressin in the treatment of cardiovascular failure in sepsis. Intensive Care Med. 2008;34(5):821–32.PubMed Lange M, Ertmer C, Westphal M. Vasopressin vs. terlipressin in the treatment of cardiovascular failure in sepsis. Intensive Care Med. 2008;34(5):821–32.PubMed
45.
Zurück zum Zitat Asfar P, Hauser B, Ivanyi Z, Ehrmann U, Kick J, Albicini M, Vogt J, Wachter U, Bruckner UB, Radermacher P, et al. Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med. 2005;33(2):373–80.PubMed Asfar P, Hauser B, Ivanyi Z, Ehrmann U, Kick J, Albicini M, Vogt J, Wachter U, Bruckner UB, Radermacher P, et al. Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med. 2005;33(2):373–80.PubMed
46.
Zurück zum Zitat Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMed Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMed
47.
Zurück zum Zitat Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMed Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMed
48.
Zurück zum Zitat Boucheix O, Blakytny R, Haroutunian G, Henriksson M, Laporte R, Milano S, Reinheimer TM. Selepressin and arginine vasopressin do not display cardiovascular risk in atherosclerotic rabbit. PLoS One. 2016;11(10):e0165422.PubMedPubMedCentral Boucheix O, Blakytny R, Haroutunian G, Henriksson M, Laporte R, Milano S, Reinheimer TM. Selepressin and arginine vasopressin do not display cardiovascular risk in atherosclerotic rabbit. PLoS One. 2016;11(10):e0165422.PubMedPubMedCentral
49.
Zurück zum Zitat Saad AF, Maybauer MO. The role of vasopressin and the vasopressin type V1a receptor agonist selepressin in septic shock. J Crit Care. 2017;40:41–5.PubMed Saad AF, Maybauer MO. The role of vasopressin and the vasopressin type V1a receptor agonist selepressin in septic shock. J Crit Care. 2017;40:41–5.PubMed
50.
Zurück zum Zitat Belletti A, Musu M, Silvetti S, Saleh O, Pasin L, Monaco F, Hajjar LA, Fominskiy E, Finco G, Zangrillo A, et al. Non-adrenergic vasopressors in patients with or at risk for vasodilatory shock. A systematic review and meta-analysis of randomized trials. PloS one. 2015;10(11):e0142605.PubMedPubMedCentral Belletti A, Musu M, Silvetti S, Saleh O, Pasin L, Monaco F, Hajjar LA, Fominskiy E, Finco G, Zangrillo A, et al. Non-adrenergic vasopressors in patients with or at risk for vasodilatory shock. A systematic review and meta-analysis of randomized trials. PloS one. 2015;10(11):e0142605.PubMedPubMedCentral
51.
Zurück zum Zitat Polito A, Parisini E, Ricci Z, Picardo S, Annane D. Vasopressin for treatment of vasodilatory shock: an ESICM systematic review and meta-analysis. Intensive Care Med. 2012;38(1):9–19.PubMed Polito A, Parisini E, Ricci Z, Picardo S, Annane D. Vasopressin for treatment of vasodilatory shock: an ESICM systematic review and meta-analysis. Intensive Care Med. 2012;38(1):9–19.PubMed
52.
Zurück zum Zitat Serpa Neto A, Nassar AP, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Damasceno MC, Russell JA. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012;16(4):R154.PubMedPubMedCentral Serpa Neto A, Nassar AP, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Damasceno MC, Russell JA. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012;16(4):R154.PubMedPubMedCentral
53.
Zurück zum Zitat Nagendran M, Maruthappu M, Gordon AC, Gurusamy KS. Comparative safety and efficacy of vasopressors for mortality in septic shock: a network meta-analysis. J Intensive Care Soc. 2016;17(2):136–45.PubMed Nagendran M, Maruthappu M, Gordon AC, Gurusamy KS. Comparative safety and efficacy of vasopressors for mortality in septic shock: a network meta-analysis. J Intensive Care Soc. 2016;17(2):136–45.PubMed
54.
Zurück zum Zitat Tan JX, Chen H, Chen XY, Zhang D, He FM. Vasopressin and its analog terlipressin versus norepinephrine in the treatment of septic shock: a meta-analysis. Int J Clin Exp Med. 2016;9(7):14183–90. Tan JX, Chen H, Chen XY, Zhang D, He FM. Vasopressin and its analog terlipressin versus norepinephrine in the treatment of septic shock: a meta-analysis. Int J Clin Exp Med. 2016;9(7):14183–90.
55.
Zurück zum Zitat Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med. 2003;31(11):2646–50.PubMed Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med. 2003;31(11):2646–50.PubMed
56.
Zurück zum Zitat Gordon AC, Wang N, Walley KR, Ashby D, Russell JA. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest. 2012;142(3):593–605.PubMed Gordon AC, Wang N, Walley KR, Ashby D, Russell JA. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest. 2012;142(3):593–605.PubMed
57.
Zurück zum Zitat Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, Holmes CL, Hebert PC, Cooper DJ, Mehta S, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36(1):83–91.PubMed Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, Holmes CL, Hebert PC, Cooper DJ, Mehta S, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36(1):83–91.PubMed
58.
Zurück zum Zitat Sacha GL, Lam SW, Duggal A, Torbic H, Bass SN, Welch SC, Butler RS, Bauer SR. Predictors of response to fixed-dose vasopressin in adult patients with septic shock. Ann Intensive Care. 2018;8(1):35.PubMedPubMedCentral Sacha GL, Lam SW, Duggal A, Torbic H, Bass SN, Welch SC, Butler RS, Bauer SR. Predictors of response to fixed-dose vasopressin in adult patients with septic shock. Ann Intensive Care. 2018;8(1):35.PubMedPubMedCentral
59.
Zurück zum Zitat Nascente AP, Freitas FG, Bakker J, Bafi AT, Ladeira RT, Azevedo LC, Lima A, Machado FR. Microcirculation improvement after short-term infusion of vasopressin in septic shock is dependent on noradrenaline. Clinics. 2017;72(12):750–7.PubMedPubMedCentral Nascente AP, Freitas FG, Bakker J, Bafi AT, Ladeira RT, Azevedo LC, Lima A, Machado FR. Microcirculation improvement after short-term infusion of vasopressin in septic shock is dependent on noradrenaline. Clinics. 2017;72(12):750–7.PubMedPubMedCentral
60.
Zurück zum Zitat Russell JA, Walley KR, Gordon AC, Cooper DJ, Hebert PC, Singer J, Holmes CL, Mehta S, Granton JT, Storms MM, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811–8.PubMed Russell JA, Walley KR, Gordon AC, Cooper DJ, Hebert PC, Singer J, Holmes CL, Mehta S, Granton JT, Storms MM, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811–8.PubMed
61.
Zurück zum Zitat Hammond DA, Cullen J, Painter JT, McCain K, Clem OA, Brotherton AL, Chopra D, Meena N: Efficacy and safety of the early addition of vasopressin to norepinephrine in septic shock. J Intensive Care Med 2017:885066617725255. Hammond DA, Cullen J, Painter JT, McCain K, Clem OA, Brotherton AL, Chopra D, Meena N: Efficacy and safety of the early addition of vasopressin to norepinephrine in septic shock. J Intensive Care Med 2017:885066617725255.
62.
Zurück zum Zitat Reardon DP, DeGrado JR, Anger KE, Szumita PM. Early vasopressin reduces incidence of new onset arrhythmias. J Crit Care. 2014;29(4):482–5.PubMed Reardon DP, DeGrado JR, Anger KE, Szumita PM. Early vasopressin reduces incidence of new onset arrhythmias. J Crit Care. 2014;29(4):482–5.PubMed
63.
Zurück zum Zitat Bihari D, Prakash S, Bersten A. Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014;42(5):671–4.PubMed Bihari D, Prakash S, Bersten A. Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014;42(5):671–4.PubMed
64.
Zurück zum Zitat Wu JY, Stollings JL, Wheeler AP, Semler MW, Rice TW. Efficacy and outcomes after vasopressin guideline implementation in septic shock. Ann Pharmacother. 2017;51(1):13–20.PubMed Wu JY, Stollings JL, Wheeler AP, Semler MW, Rice TW. Efficacy and outcomes after vasopressin guideline implementation in septic shock. Ann Pharmacother. 2017;51(1):13–20.PubMed
65.
Zurück zum Zitat Musallam N, Altshuler D, Merchan C, Zakhary B, Aberle C, Papadopoulos J. Evaluating vasopressor discontinuation strategies in patients with septic shock on concomitant norepinephrine and vasopressin infusions. Ann Pharmacother. 2018;52(8):733–9.PubMed Musallam N, Altshuler D, Merchan C, Zakhary B, Aberle C, Papadopoulos J. Evaluating vasopressor discontinuation strategies in patients with septic shock on concomitant norepinephrine and vasopressin infusions. Ann Pharmacother. 2018;52(8):733–9.PubMed
Metadaten
Titel
The effects and safety of vasopressin receptor agonists in patients with septic shock: a meta-analysis and trial sequential analysis
verfasst von
Libing Jiang
Yi Sheng
Xia Feng
Jing Wu
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2019
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2362-4

Weitere Artikel der Ausgabe 1/2019

Critical Care 1/2019 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.