Skip to main content
Erschienen in: Brain Structure and Function 2/2003

01.09.2003 | Original Article

The meningeal sheath of the regenerating spinal cord of the eel, Anguilla

verfasst von: Adrian G. Dervan, Barry L. Roberts

Erschienen in: Brain Structure and Function | Ausgabe 2/2003

Einloggen, um Zugang zu erhalten

Abstract

We describe here the meningeal sheath that encloses the spinal cord, and the sheath that develops when the cord regenerates after a total transection. This description is derived from electron and light microscopy. The sheath of the uninjured cord was found to be a single structure of two parts: an outer, thin melanocyte layer and an inner, thicker layer of 2 to 10 rows of fibroblasts, closely associated with collagen and elastic fibers. Soon after cord transection, the injured axons re-grow and, together with the reforming central canal, create a bridge that links the transected cord within 8 days of injury. This bridge is covered at first by a rudimentary meningeal sheath, formed of fibroblasts and macrophages, that later progressively thickens and becomes more compact. By about day 20, the fibroblasts are arranged as 16 to 20 loose rows that include bundles of collagen, oriented along the rostro-caudal axis of the cord. Even after 144 days, the meninx, although substantially thicker than normal because of the numerous fibroblast rows (20 to 30), still lacks the melanocyte layer. In cases in which the meninx at the transection site was mechanically and pharmacologically (6-hydroxydopamine) disrupted, bridge formation was essentially unchanged, and axonal regrowth continued; some regrowing axons, however, extruded from the denuded cord. Accordingly, our findings indicate that although the meningeal sheath is not essential for cord regeneration to take place, it may well facilitate recovery by providing mechanical guidance and support to the regrowing axons.
Literatur
Zurück zum Zitat Abnet K, Fawcett JW, Dunnett SB (1991) Interactions between meningeal cells and astrocytes in vivo and in vitro. Dev Brain Res 59:187–196CrossRef Abnet K, Fawcett JW, Dunnett SB (1991) Interactions between meningeal cells and astrocytes in vivo and in vitro. Dev Brain Res 59:187–196CrossRef
Zurück zum Zitat Anderson MJ, Waxman SG (1981) Morphology of regenerated spinal cord in Sternachus albifrons. Cell Tissue Res 219:1–8PubMed Anderson MJ, Waxman SG (1981) Morphology of regenerated spinal cord in Sternachus albifrons. Cell Tissue Res 219:1–8PubMed
Zurück zum Zitat Anderson MJ, Waxman SG (1983) Regeneration of spinal neurons in inframammalian vertebrates: Morphological and developmental aspects. J Hirnforsch 24:371–398PubMed Anderson MJ, Waxman SG (1983) Regeneration of spinal neurons in inframammalian vertebrates: Morphological and developmental aspects. J Hirnforsch 24:371–398PubMed
Zurück zum Zitat Balasingam V, Dickson K, Brade A, Yong VW (1996) Astrocyte activity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia 18:11–26CrossRefPubMed Balasingam V, Dickson K, Brade A, Yong VW (1996) Astrocyte activity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia 18:11–26CrossRefPubMed
Zurück zum Zitat Benraiss A, Arsanto JP, Coulon J, Thouveny Y (1997) Neural crest-like cells originate from the spinal cord during tail regeneration in adult amphibian urodeles. Dev Dynamics 209:15–28CrossRef Benraiss A, Arsanto JP, Coulon J, Thouveny Y (1997) Neural crest-like cells originate from the spinal cord during tail regeneration in adult amphibian urodeles. Dev Dynamics 209:15–28CrossRef
Zurück zum Zitat Bernstein JJ, Bernstein ME (1967) Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol 19:25–32PubMed Bernstein JJ, Bernstein ME (1967) Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol 19:25–32PubMed
Zurück zum Zitat Bernstein JJ, Getz R, Jefferson M, Kelemen M (1985) Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain Res 327:135–141CrossRefPubMed Bernstein JJ, Getz R, Jefferson M, Kelemen M (1985) Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain Res 327:135–141CrossRefPubMed
Zurück zum Zitat Berry M, Maxwell ML, Logan A, Mathewson A, McConnell P, Ashurst DE, Thomas GH (1983) Deposition of scar tissue in the central nervous system. Acta Neurochir Suppl 32:31–53 Berry M, Maxwell ML, Logan A, Mathewson A, McConnell P, Ashurst DE, Thomas GH (1983) Deposition of scar tissue in the central nervous system. Acta Neurochir Suppl 32:31–53
Zurück zum Zitat Bohn RC, Reier PJ, Sourbeer EB (1982) Axonal interactions with connective tissue and glial substrata during optic nerve regeneration in Xenopus larvae and adults. Am J Anat 165:397–419PubMed Bohn RC, Reier PJ, Sourbeer EB (1982) Axonal interactions with connective tissue and glial substrata during optic nerve regeneration in Xenopus larvae and adults. Am J Anat 165:397–419PubMed
Zurück zum Zitat Bunge RP (1983) Aspects of Schwann cell and fibroblast function relating to central nervous system regeneration. In Kao CC, Bunge RP, Reier PJ (eds): Spinal Cord Reconstruction. Raven Press, New York, pp 261–270 Bunge RP (1983) Aspects of Schwann cell and fibroblast function relating to central nervous system regeneration. In Kao CC, Bunge RP, Reier PJ (eds): Spinal Cord Reconstruction. Raven Press, New York, pp 261–270
Zurück zum Zitat Carbonell AL, Boya J (1988) Ultrastructural study on meningeal regeneration and meningo-glial relationships after cerebral stab wound in the adult CNS. Brain Res 439:337–344CrossRefPubMed Carbonell AL, Boya J (1988) Ultrastructural study on meningeal regeneration and meningo-glial relationships after cerebral stab wound in the adult CNS. Brain Res 439:337–344CrossRefPubMed
Zurück zum Zitat Caruncho HJ, Silva PDD, Anadon R (1993) The morphology of teleost meningocytes as revealed by freeze fracture. J Submicrosc Cytol Pathol 25:397–406PubMed Caruncho HJ, Silva PDD, Anadon R (1993) The morphology of teleost meningocytes as revealed by freeze fracture. J Submicrosc Cytol Pathol 25:397–406PubMed
Zurück zum Zitat Davies SJA, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned pathways. Exp Neurol 142:203–216CrossRefPubMed Davies SJA, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned pathways. Exp Neurol 142:203–216CrossRefPubMed
Zurück zum Zitat Dervan, AG, Roberts, BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306CrossRefPubMed Dervan, AG, Roberts, BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306CrossRefPubMed
Zurück zum Zitat Doyle LMF, Stafford PP, Roberts BL (2001) Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel. Neuroscience 107:169–179CrossRefPubMed Doyle LMF, Stafford PP, Roberts BL (2001) Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel. Neuroscience 107:169–179CrossRefPubMed
Zurück zum Zitat Duffy MT, Liebich DR, Garner LK, Hawrych A, Simpson SB, Davis BM (1992) Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between changes in synaptic circuitry and axonal growth. J Comp Neurol 316:363–374PubMed Duffy MT, Liebich DR, Garner LK, Hawrych A, Simpson SB, Davis BM (1992) Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between changes in synaptic circuitry and axonal growth. J Comp Neurol 316:363–374PubMed
Zurück zum Zitat Easter SS, Bratton B, Scherer SS (1984) Growth-related order of the retinal fibre layer in goldfish. J Neurosci 4:2173–2190PubMed Easter SS, Bratton B, Scherer SS (1984) Growth-related order of the retinal fibre layer in goldfish. J Neurosci 4:2173–2190PubMed
Zurück zum Zitat Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391PubMed Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391PubMed
Zurück zum Zitat Franklin RJM, Crang AJ, Blakemore WF (1992) The behaviour of meningeal cells following glial cell transplantation into chemically-induced areas of demyelination in the CNS. Neuropathol App Neurobiol 18:189–200 Franklin RJM, Crang AJ, Blakemore WF (1992) The behaviour of meningeal cells following glial cell transplantation into chemically-induced areas of demyelination in the CNS. Neuropathol App Neurobiol 18:189–200
Zurück zum Zitat Hildebrand M (1995) Analysis of Vertebrate Structure. John Wiley and Sons, New York Hildebrand M (1995) Analysis of Vertebrate Structure. John Wiley and Sons, New York
Zurück zum Zitat Hoffmann W (1992) Goldfish ependymins: cerebrospinal fluid proteins of meningeal origin. Prog Brain Res 91:13–17PubMed Hoffmann W (1992) Goldfish ependymins: cerebrospinal fluid proteins of meningeal origin. Prog Brain Res 91:13–17PubMed
Zurück zum Zitat Li MS, David S (1996) Topical glucocorticoids modulate the lesion interface after cerebral cortical stab wounds in adult rats. Glia 18:306–318CrossRefPubMed Li MS, David S (1996) Topical glucocorticoids modulate the lesion interface after cerebral cortical stab wounds in adult rats. Glia 18:306–318CrossRefPubMed
Zurück zum Zitat Lindsay RM (1986) Reactive Astrocytes. In: Federoff S, Vernadkis A (eds) Astrocytes. Academic Press, London, pp 231–262 Lindsay RM (1986) Reactive Astrocytes. In: Federoff S, Vernadkis A (eds) Astrocytes. Academic Press, London, pp 231–262
Zurück zum Zitat Martin P (1997) Wound healing - aiming for perfect skin regeneration. Science 276:75–81PubMed Martin P (1997) Wound healing - aiming for perfect skin regeneration. Science 276:75–81PubMed
Zurück zum Zitat Matthews MA, Onge MFS, Faciane CL (1979) An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat. Acta Neuropathol 45:27–36PubMed Matthews MA, Onge MFS, Faciane CL (1979) An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat. Acta Neuropathol 45:27–36PubMed
Zurück zum Zitat McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 61:274–287 McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 61:274–287
Zurück zum Zitat Michel ME, Reier PJ (1979) Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548PubMed Michel ME, Reier PJ (1979) Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548PubMed
Zurück zum Zitat Momose Y, Kohno K, Ito R (1988) Ultrastructural study on the meninx of the goldfish brain. J Comp Neurol 270:327–336PubMed Momose Y, Kohno K, Ito R (1988) Ultrastructural study on the meninx of the goldfish brain. J Comp Neurol 270:327–336PubMed
Zurück zum Zitat Moore IE, Buontempo JM, Weller RO (1987) Response of fetal and neonatal rat brain to injury. Neuropathol App Neurobiol 13:219–228 Moore IE, Buontempo JM, Weller RO (1987) Response of fetal and neonatal rat brain to injury. Neuropathol App Neurobiol 13:219–228
Zurück zum Zitat Morse DE, Low FN (1972) The fine structure of the pia mater of the rat. Am J Anat 133:349–368PubMed Morse DE, Low FN (1972) The fine structure of the pia mater of the rat. Am J Anat 133:349–368PubMed
Zurück zum Zitat Nakao T (1979) Electron microscopic studies on the lamprey meninges. J Comp Neurol 183:429–454PubMed Nakao T (1979) Electron microscopic studies on the lamprey meninges. J Comp Neurol 183:429–454PubMed
Zurück zum Zitat Nona SN, Stafford CA (1995) Glial repair at the lesion site in regenerating spinal cord: an immunohistochemical study using species-specific antibodies. J Neurosci Res 42:350–356PubMed Nona SN, Stafford CA (1995) Glial repair at the lesion site in regenerating spinal cord: an immunohistochemical study using species-specific antibodies. J Neurosci Res 42:350–356PubMed
Zurück zum Zitat Nordlander RH, Singer M (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 180:349–374PubMed Nordlander RH, Singer M (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 180:349–374PubMed
Zurück zum Zitat Pasterkamp RJ, Giger RJ, Ruitenberg M-J, Holtman AJGD, Wit JD, Winter FD, Verhaagen J (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13:143–16PubMed Pasterkamp RJ, Giger RJ, Ruitenberg M-J, Holtman AJGD, Wit JD, Winter FD, Verhaagen J (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13:143–16PubMed
Zurück zum Zitat Reier PJ (1986) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. In: Federoff S, Vernadakis A (eds) Astrocytes. Academic Press, London, pp 263–324 Reier PJ (1986) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. In: Federoff S, Vernadakis A (eds) Astrocytes. Academic Press, London, pp 263–324
Zurück zum Zitat Reier PJ, Webster HDF (1974) Regeneration and remyelination of Xenopus tadpole optic nerve fibers following transection or crush. J Neurocytol 3:591–618PubMed Reier PJ, Webster HDF (1974) Regeneration and remyelination of Xenopus tadpole optic nerve fibers following transection or crush. J Neurocytol 3:591–618PubMed
Zurück zum Zitat Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 63–195 Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 63–195
Zurück zum Zitat Ridet JL, Malhotra SK, Privat A, Gage GH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577 Ridet JL, Malhotra SK, Privat A, Gage GH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577
Zurück zum Zitat Rovainen CM (1970) Glucose production by lamprey meninges. Science 167:889–890PubMed Rovainen CM (1970) Glucose production by lamprey meninges. Science 167:889–890PubMed
Zurück zum Zitat Rovainen CM, Lemcoe GE, Peterson A (1971) Structure and chemistry of glucose-producing cells in meningeal tissue of the lamprey. Brain Res 30:99–11CrossRefPubMed Rovainen CM, Lemcoe GE, Peterson A (1971) Structure and chemistry of glucose-producing cells in meningeal tissue of the lamprey. Brain Res 30:99–11CrossRefPubMed
Zurück zum Zitat Schmidt JT, Shashoua VE (1988) Antibodies to ependymin block the sharpening of the regenerating retinotectal projection in the goldfish. Brain Res 446:269–284CrossRefPubMed Schmidt JT, Shashoua VE (1988) Antibodies to ependymin block the sharpening of the regenerating retinotectal projection in the goldfish. Brain Res 446:269–284CrossRefPubMed
Zurück zum Zitat Schwarz H, Muller-Schmid A, Hoffmann W (1993) Ultrastructural localization of ependymins in the endomeninx of the brain of the rainbow trout: possible association with collagen fibrils of the extracellular matrix. Cell Tissue Res 273:417–425 Schwarz H, Muller-Schmid A, Hoffmann W (1993) Ultrastructural localization of ependymins in the endomeninx of the brain of the rainbow trout: possible association with collagen fibrils of the extracellular matrix. Cell Tissue Res 273:417–425
Zurück zum Zitat Seitz R, Lohler L, Schwendemann G (1981) Ependyma and meninges of the spinal cord of the mouse. Cell Tissue Res 220:61–72PubMed Seitz R, Lohler L, Schwendemann G (1981) Ependyma and meninges of the spinal cord of the mouse. Cell Tissue Res 220:61–72PubMed
Zurück zum Zitat Shashoua VE (1991) Ependymin, a brain extracellular protein, and CNS plasticity. Ann NY Acad Sci 627:94–114PubMed Shashoua VE (1991) Ependymin, a brain extracellular protein, and CNS plasticity. Ann NY Acad Sci 627:94–114PubMed
Zurück zum Zitat Shearer MC, Fawcett JW (2001) The astrocyte/meningeal interface - a barrier to successful nerve regeneration? Cell Tissue Res 305:267–273 Shearer MC, Fawcett JW (2001) The astrocyte/meningeal interface - a barrier to successful nerve regeneration? Cell Tissue Res 305:267–273
Zurück zum Zitat Sievers J, Pehlemann FW, Gude S, Berry M (1994) Meningeal cells organise the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149PubMed Sievers J, Pehlemann FW, Gude S, Berry M (1994) Meningeal cells organise the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149PubMed
Zurück zum Zitat Simpson SB (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. L. Initiation of regeneration and cartilage differentiation: The role of ependyma. J Morphol 114:425–436 Simpson SB (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. L. Initiation of regeneration and cartilage differentiation: The role of ependyma. J Morphol 114:425–436
Zurück zum Zitat Simpson SB (1983) Fasiculation and guidance of regenerating central axons by the ependyma. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 151–162 Simpson SB (1983) Fasiculation and guidance of regenerating central axons by the ependyma. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 151–162
Zurück zum Zitat Stafford CA, Shehab SAS, Nona SN, Dillon JRC (1990) Expression of glial fibrillary acidic protein (GFAP) in goldfish optic nerve following injury. Glia 3:33–42PubMed Stafford CA, Shehab SAS, Nona SN, Dillon JRC (1990) Expression of glial fibrillary acidic protein (GFAP) in goldfish optic nerve following injury. Glia 3:33–42PubMed
Zurück zum Zitat Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notopthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ, eds: Spinal Cord Reconstruction. Raven Press, New York, pp 121–149 Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notopthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ, eds: Spinal Cord Reconstruction. Raven Press, New York, pp 121–149
Zurück zum Zitat Sterzi G (1901) Ricerche intorno all' anatomia comparata ed all' ontongenesi delle meningi e considerazioni sulla filogenesi. Arti R Ist veneto di sci, lett ed arti 60:1101–1137 Sterzi G (1901) Ricerche intorno all' anatomia comparata ed all' ontongenesi delle meningi e considerazioni sulla filogenesi. Arti R Ist veneto di sci, lett ed arti 60:1101–1137
Zurück zum Zitat Thormodsson FR, Antonian E, Graftstein B (1992) Extracellular glycoproteins of goldfish optic tectum labelled by intraocular injection of 3H-proline. Exp Neurol 117:260–268PubMed Thormodsson FR, Antonian E, Graftstein B (1992) Extracellular glycoproteins of goldfish optic tectum labelled by intraocular injection of 3H-proline. Exp Neurol 117:260–268PubMed
Zurück zum Zitat Trimmer PA, Wunderlich RE (1990) Changes in astroglial scar formation in rat optic nerve as a function of development. J Comp Neurol 296:359–378PubMed Trimmer PA, Wunderlich RE (1990) Changes in astroglial scar formation in rat optic nerve as a function of development. J Comp Neurol 296:359–378PubMed
Zurück zum Zitat Vandenabeele F, Creemers J, Lamberts I (1996) Ultrastructure of the human arachnoid mater and dura mater. J Anat 189:417–430 Vandenabeele F, Creemers J, Lamberts I (1996) Ultrastructure of the human arachnoid mater and dura mater. J Anat 189:417–430
Zurück zum Zitat Van Gelderen CV (1926) Uber die Entwicklung der Hirnhaute bei Teleostiern. Anat Anz 60:48–57 Van Gelderen CV (1926) Uber die Entwicklung der Hirnhaute bei Teleostiern. Anat Anz 60:48–57
Zurück zum Zitat Wang X, Messing A, David S (1997) Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 148:568–576CrossRefPubMed Wang X, Messing A, David S (1997) Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 148:568–576CrossRefPubMed
Zurück zum Zitat Wang J, Murray M, Grafstein B (1995) Cranial meninges of goldfish: Age-related changes in morphology of meningeal cells and accumulation of surfactant-like multilamellar bodies. Cell Tissue Res 281:349–358CrossRefPubMed Wang J, Murray M, Grafstein B (1995) Cranial meninges of goldfish: Age-related changes in morphology of meningeal cells and accumulation of surfactant-like multilamellar bodies. Cell Tissue Res 281:349–358CrossRefPubMed
Metadaten
Titel
The meningeal sheath of the regenerating spinal cord of the eel, Anguilla
verfasst von
Adrian G. Dervan
Barry L. Roberts
Publikationsdatum
01.09.2003
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 2/2003
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-003-0334-5

Weitere Artikel der Ausgabe 2/2003

Brain Structure and Function 2/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.