Skip to main content
Erschienen in: Molecular Cancer 1/2017

Open Access 01.12.2017 | Review

Understanding of leukemic stem cells and their clinical implications

verfasst von: Xuefei Wang, Shile Huang, Ji-Long Chen

Erschienen in: Molecular Cancer | Ausgabe 1/2017

Abstract

Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Abkürzungen
ABC transporters
ATP-binding cassette transporters
AML
Acute myeloid leukemia
BM niche
Bone marrow niche
BMI1
B lymphoma Mo-MLV insertion region 1 homolog
CAR T-cells
Chimeric antigen receptor modified T-cells
CEBPE
CCAAT/enhancer binding protein epsilon
CEPBA
CCAAT/enhancer binding protein alpha
CeRNA
Competitive endogenous RNA
CLL
Chronic lymphocytic leukemia
CML
Chronic myeloid leukemia
CSCs
Cancer stem cells
CXCL12
C-X-C motif chemokine 12
CXCR4
C-X-C chemokine receptor type 4
DNMT3A
DNA methyltransferase 3 alpha
eIF4B
Eukaryotic translation initiation factor 4B
FDA
Food and Drug Administration
FLT3-ITD
Internal tandem duplication of the gene FLT3
HSCs
Hematopoietic stem cells
IDH1/2
Isocitrate dehydrogenase 1/2
IGF2
Insulin-like growth factor 2
IL1RAP
IL-1 receptor accessory protein
JAK/STAT
Janus kinase/signal transducer and activator of transcription
KRAS/NRAS
Kirsten rat sarcoma viral oncogene homolog/neuroblastoma rat sarcoma viral oncogene homolog
lncRNAs
Long non-coding RNAs
LSCs
Leukemic stem cells
LT-HSCs
Long-term HSCs
miRNAs
microRNAs
mTOR
mammalian/mechanistic target of rapamycin
ncRNAs
non-coding RNAs
NF-κB
Nuclear factor kappa-light-chain-enhancer of activated B cells
NPM1
Nucleophosmin 1
PI3K/AKT
Phosphatidylinositide 3-kinase/protein kinase B
PIM
Proviral insertion in murine
PTEN
Phosphatase and tensin homolog
SDF-1α
Stromal cell derived factor-1
SOCS-1 and SOCS-3
suppressors of cytokine signaling 1 and 3
TET2
Tet methylcytosine dioxygenase 2
TNFα
Tumor necrosis factor alpha
VCAM-1
Vascular cell adhesion molecule 1

Background

The existence of CSCs was firstly evidenced in AML [1], and has been now extended to a broad spectrum of solid tumors [28]. In 1994, Dick and colleagues [1] showed that only the leukemic cells expressing the same markers as normal adult hematopoietic stem cells (CD34+CD38) could initiate hematopoietic malignancy, and termed these cells as leukemia-initiating cells, leukemic stem cells (LSCs), or cancer stem cells (CSCs) [1, 9, 10]. Importantly, such cell population possesses the capacities for self-renewal, proliferation and differentiation. Increasing evidence has demonstrated that LSCs are clinically relevant, indicating that therapies targeting LSCs in AML would improve survival outcomes [11].
Conventional anticancer strategy is a combination of surgery, chemotherapy and radiotherapy with allogeneic stem cell transplantation for eligible candidates [1214]. However, elderly patients cannot tolerate such intense regimens, and patients usually face the risk of recurrence, metastasis and drug resistance. It is thought that these therapies predominantly target at a bulk tumor populations but leave CSCs behind. Importantly, these CSCs, with highly expressed ATP-binding cassette (ABC) transporters, have been shown to protect themselves from the attacks from chemotherapeutic agents [1517]. Hence, the inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. It is well recognized that development of CSC-selective therapies is important for treating CSCs-containing cancers [18]. In this review, we discuss the current understanding of LSCs. Also, we summarize various therapeutic agents targeting LSCs that are being studied in clinical trials.

Genetic and epigenetic heterogeneities of LSCs

Leukemias are now viewed as aberrant hematopoietic processes initiated by rare LSCs, which arise from the transformation of hematopoietic stem cells (HSCs) or committed progenitor cells [19]. During the course of malignant transformation, LSCs acquire the capacity of self-renewal, proliferation and differentiation through continuous genetic and epigenetic alteration and clonal diversification. Thus, understanding how genetic and epigenetic heterogeneities develop in different leukemias has become an important area for cancer research. Although CSCs have been found in both leukemia and solid tumors, not all of CSCs in the solid tumors follow the heterogeneity model of LSC.
Increasing investigations using deep genome sequencing have identified many recurrent mutated genes critically implicated in the pathogenesis of human AML [2027]. In 2013, the Cancer Genome Atlas Research Network analyzed the genome of 200 AML patients, and thoroughly defined the recurrent mutations in AML [28]. About 30 genes were identified to be mutated in more than 2% of patients. Remarkably, many of these mutated genes encode proteins that normally function at the epigenetic level, including modifications of DNA cytosine residues and post-translational modifications of histones. In addition, other studies have shown that clonal composition of AMLs appears to be changed quite markedly at both the genetic and epigenetic levels after therapy in relapsed disease [2931].
Interestingly, it has been found that there is a sequential order for the acquisition of these mutations during leukemogenesis. For example, some researchers observed that somatic mutations in epigenetic modifiers that regulate cytosine methylation, such as DNMT3A (DNA methyltransferase 3 alpha), IDH1/2 (isocitrate dehydrogenase 1/2) and TET2 (tet methylcytosine dioxygenase 2), occur early in pre-leukemic HSCs [3234]. However, other somatic mutations in signaling pathways that drive proliferation, such as NPM1 (nucleophosmin 1), FLT3-ITD (internal tandem duplication of the gene FLT3) and KRAS/NRAS (Kirsten rat sarcoma viral oncogene homolog/neuroblastoma rat sarcoma viral oncogene homolog), are later events in AML transformation [35]. These results suggest that disruption of epigenetic patterning is likely an early and prominent event during leukemogenesis.
In order to characterize the expression profile of LSCs in chronic myeloid leukemia (CML), Gerber and colleagues performed genome-wide transcriptome analysis of CML LSCs using exon microarrays [36]. They identified 97 genes that are differentially expressed between CML LSCs and normal HSCs. Further analysis revealed dysregulation of proliferation, differentiation and signaling pathways in CML LSCs. These data may provide potential therapeutic targets unique to CML LSCs.

Surface molecules and microenvironment of LSCs and their clinical implications

Cell surface molecules of LSCs

The AML LSCs were the first reported and best characterized type of CSCs, and they specifically display CD34+CD38 cell surface markers [1, 9, 10]. However, subsequent studies showed that the surface markers of AML LSCs are considerably heterogeneous [3747]. For example, AML LSCs were found not only in Lin/CD38 fractions but also in CD34, Lin+, CD38+, and CD45RA+ fractions [45]. It was also found that true AML LSCs in the CD34+/CD38 fractions, originally described by Bonnet and Dick, were very rare and comprised a hierarchy of cells with different self-renewal potential [46]. In addition, some surface markers of AML LSCs (CD34+, CD38, CD71, and HLA-DR) are shared with normal HSCs, and others (Lin+, CD38+, CD45RA+) are associated with normal committed progenitors [38, 45]. These findings stirred up a debate about whether AML LSCs are derived from the normal HSCs or from the committed progenitor cells. On the other hand, the surface markers of LSCs are heterogeneous, which makes hard for classification of LSCs and even LSCs-targeted treatment in clinics.
Recently, great progress has been made in understanding of LSC surface markers and their clinical applications, especially in AML cases. Firstly, a number of critical surface markers unique to AML LSCs have been identified. For example, it has been revealed that CD90 and CD117 are deficient in AML LSCs [39], while CD123 [42, 48], TIM3 [44, 49], CD47 [50, 51], CD96 [52], CLL-1 [53, 54], and IL-1 receptor accessory protein (IL1RAP) [55] are highly expressed in AML LSCs. Targeting these surface markers is a promising strategy for eradicating AML LSCs. Previous studies have shown that CD123 (IL-3 receptor α chain) was preferentially expressed in the CD34+/CD38 AML cells, as compared with normal HSC samples. Pretreatment of AML cells with anti-CD123 monoclonal antibody 7G3 resulted in decreased engraftment when they were injected into a xenograft model [42, 48]. To date, phase I clinical trials (NCT00401739 and NCT01632852) of using monoclonal antibody targeting CD123 (CSL360 and improved CSL362) [48] have been tested in CD123+ AML patients. Moreover, other monoclonal antibodies targeting CD47 [56, 57], CD96 [52, 58], TIM3 [44, 49] and CLL-1 [54, 59] have also been investigated in pre-clinical models for their ability to eliminate primary AML LSCs. It is worth mentioning that Gemtuzumab Ozogamicin, an anti-CD33 antibody, is the first monoclonal antibody approved by the Food and Drug Administration (FDA) of the USA in 2000 for the treatment of AML, although it may not specifically target LSCs [60].
Secondly, increasing novel therapies are continuously developed to specifically target these surface antigens of LSCs and are undergoing in clinical trials in AML cases. Besides monoclonal antibodies mentioned above [61, 62], these new therapies include both bi-specific and tri-specific antibody fragments [63, 64], immunotoxins [65], chimeric antigen receptor modified T-cells (CAR T-cells) [66], and nano-particles containing surface markers-targeted medication [67]. Notably, DT388IL3 (SL-401) is a recombinant immunotoxin that is created by fusing diphtheria toxin with a ligand targeting IL-3 receptor. At present, DT388IL3 (SL-401) undergoes phase I/II trials (NCT02113982 and NCT02270463) in AML [65] (Table 1).
Table 1
Anti-LSCs agents that are undergoing in AML clinical trials
Targets
Name of agents
Property of agents
Stage of clinical trials
Clinical trial identifier
References
Cell surface antigens
 
 CD123
CSL360
Monoclonal antibody
Phase I
NCT00401739
[42, 48]
CSL362
Monoclonal antibody
Phase I
NCT01632852
[48]
DT388IL-3 (SL-401)
Immunotoxin
Phase I/II
NCT02113982,NCT02270463
[65]
Signaling pathways
 
 PI3K
CAL-101 (Idelalisib)
Inhibitor of PI3K
Phase I
NCT00710528
[114]
 AKT
Perifosine
Inhibitor of AKT
Phase I
NCT00301938
[184, 185]
MK-2206
Inhibitor of AKT
Phase II
NCT01253447
[186, 187]
 mTOR
Everolimus(RAD001)
Inhibitor of mTOR
Phase II
NCT00762632
[188]
Temsirolimus
Inhibitor of mTOR
Phase II
NCT00775593
[189, 190]
 NF-κB
Bortezomib
Inhibitor of IκB
Phase I/II
NCT00651781,NCT00742625
[191, 192]
 Wnt
CWP232291
Inhibitor of β-catenin
Phase I
NCT01398462
/
Microenvironment
 
 CXCR4
Plerixafor(AMD3100)
Antagonist of CXCR4
Phase I/II
NCT00990054,NCT00822770
[7577, 193]

Microenvironment associated with LSCs

Under normal conditions, HSCs rely on the interactions with the bone marrow (BM) niche, which is critical for their proper function and maintenance [68]. The remodeling of the BM niche is commonly observed in blood malignancies. There is evidence that growth of leukemic cells disrupts the BM niches of normal hematopoietic progenitor cells and creates a microenvironment hospitable for them [69]. Within such microenvironment, LSCs are able to communicate with BM stromal cells through cytokines, chemokines and intracellular signals initiated by cellular adhesion [70, 71]. Importantly, these signals influence the ability of LSCs to self-renew, maintain their quiescence, and prevent apoptosis. In addition, the BM niche provides two distinct microenvironmental zones (the osteoblastic niche and vascular niche) that likely regulate the cycling of LSCs [7173]. Thus, blocking the interactions between LSCs and their microenvironment represents a promising strategy to disrupt LSC homeostasis and restore normal hematopoiesis.
One of such strategies is to dislodge LSCs from their protective BM niche and thus sensitize the LSCs to conventional chemotherapies. It has been demonstrated that LSCs migrate into and remain within the BM niche through the interaction between C-X-C chemokine receptor type 4 (CXCR4) and stromal cell derived factor-1 (SDF-1α), also known as C-X-C motif chemokine 12 (CXCL12) [74]. Recently, manipulating the CXCL12-CXCR4 axis using Plerixafor (AMD3100) in relapsed AML has been reported as a safe strategy in phase I/II clinical trials (NCT00990054 and NCT00822770) [7578]. Additionally, ligation of the adhesion molecules CD44 [79] and vascular cell adhesion molecule 1 (VCAM-1) [80] with their monoclonal antibodies has already been tested in the clinic. Other strategies like altering BM niche remodeling and inflammatory microenvironment, such as targeting pro-inflammatory cytokines tumor necrosis factor alpha (TNFα), IL-1, and IL-6, might be very promising but mainly at pre-clinical stages [81].

Intracellular molecules and signaling of LSCs

Critical signaling pathways involved in regulation of LSCs

LSCs are characterized by limitless self-renewal, proliferation and differentiation. A set of critical genes impact these functional properties through a wide range of cellular pathways and processes, which have been described in detail by many groups [13, 19, 71, 82]. Signaling pathways such as Wnt/β-catenin [8389] and Hedgehog [9092] play important role in regulating self-renewal of LSCs. These signaling pathways are also critically required for the development of normal HSCs [93]. In addition, it is thought that LSCs can evade apoptosis by up-regulating NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) [94, 95] or by down-regulating Fas/CD95 [96]. Here, we review some key signaling pathways involved in the regulation of survival and self-renewal of LSCs.
The well-known Wnt/β-catenin signaling pathway plays fundamental role in maintaining CSC populations. The activation of Wnt/β-catenin pathway leads to the translocation of β-catenin into the nucleus, where it induces the expression of target genes such as c-Myc, c-Jun and cyclin D1 [97101]. Various experiments have demonstrated that Wnt/β-catenin signaling pathway acts as a key regulator in controlling proliferation, survival, and differentiation of hematopoietic cells [99, 102]. Aberrant activation of Wnt/β-catenin signaling pathway has also been found in both AML [8789] and CML [83, 84]. Subsequent studies have shown that Wnt/β-catenin signaling pathway is required for efficient self-renewal of LSCs, indicating that it is an attractive therapeutic strategy to target Wnt/β-catenin signaling in AML and CML [84, 85]. In addition, it has been documented that Wnt signaling pathway and the polycomb-group protein BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) are involved in the expansion of LSCs [103105].
Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphatidylinositide 3-kinase (PI3K)/protein kinase B (AKT) are two crucial signaling pathways that have been implicated in LSC survival and multiple cancer formation. It is well established that malignant transformation of many cell types, especially hematopoietic cells, involves the dysregulation of JAK/STAT and/or PI3K/AKT that regulate cellular proliferation and survival. For example, there is considerable evidence showing that aberrations in these signaling pathways are associated with numerous leukemias. In CML, JAK/STAT/PIM (proviral insertion in murine) and PI3K/AKT/mTOR (mammalian/mechanistic target of rapamycin) pathways are constitutively activated by Bcr-Abl, a non-receptor tyrosine kinase, resulting in uncontrolled cellular proliferation [12, 106108]. Bcr-Abl can also cause tyrosine phosphorylation of suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3), two potent suppressors of JAK/STAT signaling, and thereby diminish their inhibitory effects on JAK/STAT activation [109]. Interestingly, PI3K mutation and AKT1 (E17K) mutation has been identified in a variety of tumors. AKT1 (E17K) mutant, a constitutively activated form of AKT1, can significantly promote tumorigenesis [110]. In addition, it was observed that other members of the PI3K/AKT/mTOR pathway, such as PTEN (phosphatase and tensin homolog) and mTOR, function in the maintenance of LSCs [111]. Recently, we have shown that there exists a crosstalk between JAK/STAT/PIM and PI3K/AKT/mTOR pathways that converge on eukaryotic translation initiation factor 4B (eIF4B) to regulate the survival of Abl transformants [112, 113].
In brief, increasing evidence has suggested that multiple signaling pathways are involved in the development of LSCs. Profound elucidation of the intricate pathway network in LSCs is significant in understanding of LSCs and designing precise treatment of leukemia through targeting LSCs. Currently, various clinical trials are in process to test the efficacy of agents targeting intracellular proteins and pathways associated with LSCs. For example, clinical studies of the drug CAL-101, an inhibitor of PI3K, showed remarkable success in chronic lymphocytic leukemia (CLL). It has also been found that CAL-101 has some effects on tumor microenvironment [114]. Additionally, other inhibitors targeting PI3K/AKT/mTOR, NF-κB and Wnt signaling in the clinic are listed in Table 1.

Functional involvement of non-coding RNAs in malignant hematopoiesis

Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play critical roles in multiple biological processes [115119]. Aberrant expression and functioning of these ncRNAs have been shown to be associated with various cancers and cancer stem cells [120125]. Here, we highlight several miRNAs and lncRNAs as key regulators in hematopoietic cells and LSCs (Fig. 1).

Regulation of hematopoietic malignancies by miRNAs

miRNAs are 18–22 nucleotides ncRNAs that generally regulate gene expression by promoting mRNA degradation or inhibiting mRNA translation [126, 127]. During the tumorigenesis, some miRNAs act as oncogenes, whereas others function as tumor suppressors [128132]. They can regulate cell growth, proliferation, survival, migration and invasion of cancer cells. Notably, the roles of well-known miRNAs in normal and malignant hematopoiesis have been extensively reviewed [133137]. These miRNAs regulate almost every step of development and differentiation of both normal hematopoietic cells and LSCs.
MiR-125 is a highly conserved miRNA. There are three homologs of miR-125 (hsa-miR-125b-1, hsa-miR-125b-2 and hsa-miR-125a) in human [136]. Previous investigations have revealed that highly expressed miR-125 enhances self-renewal and survival of HSCs, and dysregulation of miR-125 occurs in multiple hematopoietic malignancies [138142]. In particular, miR-125 is implicated in hematopoiesis through the p53-involved regulation network [143].
Recently, Lechman and colleagues have shown that miR-126 preserves AML LSC quiescence and promotes chemotherapy resistance by targeting the PI3K/AKT/mTOR signaling pathway [144]. Interestingly, reduction of miR-126 level impairs LSC maintenance, but it plays an opposing role in normal HSCs [144]. In addition, functional involvement of miR-29a has also been found in AML LSCs [134]. Previous experiments demonstrated that miR-29a was highly expressed in AML samples. Furthermore, results exhibited that miR-29a can promote proliferation of hematopoietic progenitor, and transform AML by converting myeloid progenitors into LSCs [134].

Involvement of lncRNAs in leukemogenesis

Over the past decade, increasing numbers of lncRNAs have been identified and recognized as novel regulators that are implicated in various cellular processes. LncRNAs are generally more than 200 nucleotides in length, and modulate gene expression through interaction with DNAs, RNAs and proteins [145147]. They function at multiple levels, including gene transcription, post-transcriptional processing, RNA translation, and epigenetic modifications [148]. It has been reported that some lncRNAs are involved in the regulation of CSCs [149152]. For example, the lncRNA, named lncTCF7, has been identified to promote liver CSC self-renewal and tumor propagation by activating Wnt signaling [149]. Moreover, many lncRNAs have been seen to be associated with normal hematopoietic cells and various types of leukemia [118, 153160] (Fig. 1).
Dysregulation of lncRNA H19 has been observed in various tumors, including Bcr-Abl-induced leukemia [161164]. H19 acts as dual regulators in different cancers (either as an oncogene or a tumor suppressor) and also serves as a precursor for miR-675, known to down-regulate the tumor suppressor gene RB in human colorectal cancer [165167]. Importantly, H19 is highly expressed in long-term HSCs (LT-HSCs). H19-deficiency results in activation of the insulin-like growth factor 2 (IGF2)-IGF1 receptor pathway, leading to increased proliferation and decreased long-term self-renewal of HSCs [168].
Recently, Guo et al. have comprehensively analyzed the expression of lncRNAs in human CML cells [158]. Notably, a lncRNA termed lncRNA-BGL3 was highly induced in response to silence of Bcr-Abl expression or inhibition of Bcr-Abl kinase activity in K562 cells and leukemic cells derived from CML patients. Furthermore, lncRNA-BGL3 functions as a competitive endogenous RNA (ceRNA) to cross-regulate PTEN expression, thereby modulating leukemic cell survival. Thus, lncRNA-BGL3 has been identified as a tumor suppressor in Bcr-Abl-mediated cellular transformation.
To date, miRNAs and lncRNAs have been confirmed by increasing evidence as functional mediators in cancer cells and cancer stem cells. Some cancer-associated ncRNAs are currently considered as biomarkers for patient prognosis and potential therapeutic agents for particular cancers [128, 129, 169181]. For example, MRX34, the first miRNA mimic, entered phase I clinical trials in patients with advanced hepatocellular carcinoma in 2013 [169]. In AML, Dorrance et al. have observed that miR-126 enriches in AML LSCs and contributes to the long-term maintenance and self-renewal of LSCs. Treatment with novel nano-particles containing antagomiR-126 results in reduction of LSCs in vivo [181]. Therefore, better understanding of the mechanisms underlying functional involvement of miRNAs and lncRNAs in LSC development and leukemogenesis is of great importance for precise treatment of hematopoietic malignancies.

Conclusion

Over the past two decades, the function and phenotype of LSCs have been continuously defined. Furthermore, numerous studies provide accumulating evidence that there exist CSCs in a variety of solid tumors [182, 183]. Importantly, these progresses have led to the development of many novel therapeutic strategies targeting CSCs. Here, we have reviewed the current understanding of LSCs both in intrinsic and extrinsic aspects, and discussed the promising therapeutics that is being tested in clinical trials. Although identification and characterization of LSCs have renewed leukemia research and helped develop diverse clinical therapeutic strategies, some tough challenges for LSCs-based leukemia therapy still remain. One of the greatest challenges is early and efficient identification of LSCs in diverse leukemia patients. Moreover, better understanding of LSCs development and differentiation is critically required for clinical implications of the strategies targeting such cell populations. Precise mechanisms by which extracellular and intracellular molecules and their signaling regulate LSCs also remain to be determined. Therefore, further efforts are needed to identify more specific biomarkers of LSCs, determine specific targets and thereby develop efficient LSCs-based treatment of leukemia.

Funding

This work was supported by National Basic Research Program (973) of China (2014CB541804, 2015CB910502) and Natural Science Foundation of China (91640101, 81472611).

Availability of data and material

Not applicable.

Authors’ contributions

XW wrote the manuscript. J-LC and SH revised and approved the final manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedCrossRef Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedCrossRef
2.
Zurück zum Zitat Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedPubMedCentralCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.PubMedCrossRef Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.PubMedCrossRef
4.
Zurück zum Zitat Burns JS, Abdallah BM, Guldberg P, et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res. 2005;65:3126–35.PubMed Burns JS, Abdallah BM, Guldberg P, et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res. 2005;65:3126–35.PubMed
5.
Zurück zum Zitat Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.PubMedCrossRef Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.PubMedCrossRef
6.
Zurück zum Zitat Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A. 2006;103:11154–9.PubMedPubMedCentralCrossRef Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A. 2006;103:11154–9.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–5.PubMedCrossRef Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–5.PubMedCrossRef
8.
Zurück zum Zitat O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef
9.
Zurück zum Zitat Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedCrossRef Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedCrossRef
10.
Zurück zum Zitat Bhatia M, Wang JC, Kapp U, et al. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.PubMedPubMedCentralCrossRef Bhatia M, Wang JC, Kapp U, et al. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Eppert K, Takenaka K, Lechman ER, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.PubMedCrossRef Eppert K, Takenaka K, Lechman ER, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.PubMedCrossRef
13.
Zurück zum Zitat Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.PubMedPubMedCentralCrossRef Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.PubMedCrossRef Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.PubMedCrossRef
15.
Zurück zum Zitat Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.PubMedCrossRef Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.PubMedCrossRef
16.
Zurück zum Zitat Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008;68:190–7.PubMedPubMedCentralCrossRef Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008;68:190–7.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Raaijmakers MH. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia. 2007;21:2094–102.PubMedCrossRef Raaijmakers MH. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia. 2007;21:2094–102.PubMedCrossRef
18.
Zurück zum Zitat Carnero A, Garcia-Mayea Y, Mir C, et al. The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 2016;49:25–36.PubMedCrossRef Carnero A, Garcia-Mayea Y, Mir C, et al. The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 2016;49:25–36.PubMedCrossRef
20.
21.
Zurück zum Zitat Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114:144–7.PubMedPubMedCentralCrossRef Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114:144–7.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.PubMedPubMedCentralCrossRef Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.PubMedCrossRef Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.PubMedCrossRef
25.
Zurück zum Zitat Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.PubMedCrossRef Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.PubMedCrossRef
26.
Zurück zum Zitat Greif PA, Eck SH, Konstandin NP, et al. Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia. 2011;25:821–7.PubMedCrossRef Greif PA, Eck SH, Konstandin NP, et al. Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia. 2011;25:821–7.PubMedCrossRef
27.
Zurück zum Zitat Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43:309–15.PubMedCrossRef Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43:309–15.PubMedCrossRef
28.
Zurück zum Zitat Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.CrossRef Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.CrossRef
29.
Zurück zum Zitat Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.PubMedPubMedCentralCrossRef Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kronke J, Bullinger L, Teleanu V, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122:100–8.PubMedCrossRef Kronke J, Bullinger L, Teleanu V, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122:100–8.PubMedCrossRef
33.
34.
35.
Zurück zum Zitat Corces-Zimmerman MR, Hong WJ, Weissman IL, et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A. 2014;111:2548–53.PubMedPubMedCentralCrossRef Corces-Zimmerman MR, Hong WJ, Weissman IL, et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A. 2014;111:2548–53.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Gerber JM, Gucwa JL, Esopi D, et al. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget. 2013;4:715–28.PubMedPubMedCentralCrossRef Gerber JM, Gucwa JL, Esopi D, et al. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget. 2013;4:715–28.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Blair A, Hogge DE, Ailles LE, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–12.PubMed Blair A, Hogge DE, Ailles LE, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–12.PubMed
38.
Zurück zum Zitat Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood. 1998;92:4325–35.PubMed Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood. 1998;92:4325–35.PubMed
39.
Zurück zum Zitat Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol. 2000;28:660–71.PubMedCrossRef Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol. 2000;28:660–71.PubMedCrossRef
40.
Zurück zum Zitat Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.PubMedCrossRef Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.PubMedCrossRef
41.
Zurück zum Zitat Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.PubMedCrossRef Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.PubMedCrossRef
42.
Zurück zum Zitat Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.PubMedCrossRef Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.PubMedCrossRef
43.
Zurück zum Zitat Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood. 2010;115:1976–84.PubMedPubMedCentralCrossRef Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood. 2010;115:1976–84.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7:708–17.PubMedCrossRef Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7:708–17.PubMedCrossRef
45.
Zurück zum Zitat Sarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest. 2011;121:384–95.PubMedCrossRef Sarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest. 2011;121:384–95.PubMedCrossRef
46.
Zurück zum Zitat Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.PubMedCrossRef Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.PubMedCrossRef
47.
Zurück zum Zitat Moshaver B, van Rhenen A, Kelder A, et al. Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells. 2008;26:3059–67.PubMedCrossRef Moshaver B, van Rhenen A, Kelder A, et al. Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells. 2008;26:3059–67.PubMedCrossRef
48.
Zurück zum Zitat Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28:2213–21.PubMedCrossRef Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28:2213–21.PubMedCrossRef
49.
Zurück zum Zitat Jan M, Chao MP, Cha AC, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A. 2011;108:5009–14.PubMedPubMedCentralCrossRef Jan M, Chao MP, Cha AC, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A. 2011;108:5009–14.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.PubMedPubMedCentralCrossRef Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.PubMedPubMedCentralCrossRef Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Hosen N, Park CY, Tatsumi N, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A. 2007;104:11008–13.PubMedPubMedCentralCrossRef Hosen N, Park CY, Tatsumi N, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A. 2007;104:11008–13.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–66.PubMedCrossRef van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–66.PubMedCrossRef
54.
Zurück zum Zitat Zhao X, Singh S, Pardoux C, et al. Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica. 2010;95:71–8.PubMedCrossRef Zhao X, Singh S, Pardoux C, et al. Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica. 2010;95:71–8.PubMedCrossRef
55.
Zurück zum Zitat Askmyr M, Agerstam H, Hansen N, et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 2013;121:3709–13.PubMedCrossRef Askmyr M, Agerstam H, Hansen N, et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 2013;121:3709–13.PubMedCrossRef
56.
Zurück zum Zitat Weiskopf K, Ring AM, Ho CC, et al. Engineered SIRPalpha variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013;341:88–91.PubMedCrossRef Weiskopf K, Ring AM, Ho CC, et al. Engineered SIRPalpha variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013;341:88–91.PubMedCrossRef
57.
Zurück zum Zitat Theocharides AP, Jin L, Cheng PY, et al. Disruption of SIRPalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 2012;209:1883–99.PubMedPubMedCentralCrossRef Theocharides AP, Jin L, Cheng PY, et al. Disruption of SIRPalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 2012;209:1883–99.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Mohseni Nodehi S, Repp R, Kellner C, et al. Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One. 2012;7:e42426.PubMedPubMedCentralCrossRef Mohseni Nodehi S, Repp R, Kellner C, et al. Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One. 2012;7:e42426.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64:8443–50.PubMedCrossRef Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64:8443–50.PubMedCrossRef
60.
Zurück zum Zitat Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed
61.
Zurück zum Zitat Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene. 2011;30:1009–19.PubMedCrossRef Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene. 2011;30:1009–19.PubMedCrossRef
63.
Zurück zum Zitat Kuo SR, Wong L, Liu JS. Engineering a CD123xCD3 bispecific scFv immunofusion for the treatment of leukemia and elimination of leukemia stem cells. Protein Eng Des Sel. 2012;25:561–9.PubMedCrossRef Kuo SR, Wong L, Liu JS. Engineering a CD123xCD3 bispecific scFv immunofusion for the treatment of leukemia and elimination of leukemia stem cells. Protein Eng Des Sel. 2012;25:561–9.PubMedCrossRef
64.
Zurück zum Zitat Kugler M, Stein C, Kellner C, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol. 2010;150:574–86.PubMedCrossRef Kugler M, Stein C, Kellner C, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol. 2010;150:574–86.PubMedCrossRef
65.
Zurück zum Zitat Frankel A, Liu JS, Rizzieri D, et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008;49:543–53.PubMedCrossRef Frankel A, Liu JS, Rizzieri D, et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008;49:543–53.PubMedCrossRef
66.
Zurück zum Zitat Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013;161:389–401.PubMedCrossRef Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013;161:389–401.PubMedCrossRef
67.
Zurück zum Zitat Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.PubMedPubMedCentralCrossRef Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16:254–67.PubMedPubMedCentralCrossRef Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16:254–67.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Colmone A, Amorim M, Pontier AL, et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.PubMedCrossRef Colmone A, Amorim M, Pontier AL, et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.PubMedCrossRef
70.
Zurück zum Zitat Roboz GJ, Guzman M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol. 2009;2:663–72.PubMedCrossRef Roboz GJ, Guzman M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol. 2009;2:663–72.PubMedCrossRef
72.
Zurück zum Zitat Perry JM, Li L. Disrupting the stem cell niche: good seeds in bad soil. Cell. 2007;129:1045–7.PubMedCrossRef Perry JM, Li L. Disrupting the stem cell niche: good seeds in bad soil. Cell. 2007;129:1045–7.PubMedCrossRef
73.
Zurück zum Zitat Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.PubMedCrossRef Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.PubMedCrossRef
74.
Zurück zum Zitat Spoo AC, Lubbert M, Wierda WG, et al. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109:786–91.PubMedCrossRef Spoo AC, Lubbert M, Wierda WG, et al. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109:786–91.PubMedCrossRef
75.
Zurück zum Zitat Uy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.PubMedPubMedCentralCrossRef Uy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.PubMedPubMedCentralCrossRef Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Mohty M, Duarte RF, Croockewit S, et al. The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. Leukemia. 2011;25:1–6.PubMedCrossRef Mohty M, Duarte RF, Croockewit S, et al. The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. Leukemia. 2011;25:1–6.PubMedCrossRef
78.
Zurück zum Zitat Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113:6206–14.PubMedPubMedCentralCrossRef Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113:6206–14.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Krause DS, Lazarides K, von Andrian UH, et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12:1175–80.PubMedCrossRef Krause DS, Lazarides K, von Andrian UH, et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12:1175–80.PubMedCrossRef
80.
Zurück zum Zitat Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-kappaB mediates chemoresistance. Blood. 2014;123:2691–702.PubMedPubMedCentralCrossRef Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-kappaB mediates chemoresistance. Blood. 2014;123:2691–702.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13:285–99.PubMedPubMedCentralCrossRef Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13:285–99.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Chan WI, Huntly BJ. Leukemia stem cells in acute myeloid leukemia. Semin Oncol. 2008;35:326–35.PubMedCrossRef Chan WI, Huntly BJ. Leukemia stem cells in acute myeloid leukemia. Semin Oncol. 2008;35:326–35.PubMedCrossRef
83.
84.
Zurück zum Zitat Hu Y, Chen Y, Douglas L, et al. beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 2009;23:109–16.PubMedCrossRef Hu Y, Chen Y, Douglas L, et al. beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 2009;23:109–16.PubMedCrossRef
85.
Zurück zum Zitat Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.PubMedPubMedCentralCrossRef Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Yeung J, Esposito MT, Gandillet A, et al. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606–18.PubMedCrossRef Yeung J, Esposito MT, Gandillet A, et al. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606–18.PubMedCrossRef
87.
Zurück zum Zitat Griffiths EA, Gore SD, Hooker C, et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk Lymphoma. 2010;51:1711–9.PubMedPubMedCentralCrossRef Griffiths EA, Gore SD, Hooker C, et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk Lymphoma. 2010;51:1711–9.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Gandillet A, Park S, Lassailly F, et al. Heterogeneous sensitivity of human acute myeloid leukemia to beta-catenin down-modulation. Leukemia. 2011;25:770–80.PubMedPubMedCentralCrossRef Gandillet A, Park S, Lassailly F, et al. Heterogeneous sensitivity of human acute myeloid leukemia to beta-catenin down-modulation. Leukemia. 2011;25:770–80.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Siapati EK, Papadaki M, Kozaou Z, et al. Proliferation and bone marrow engraftment of AML blasts is dependent on beta-catenin signalling. Br J Haematol. 2011;152:164–74.PubMedCrossRef Siapati EK, Papadaki M, Kozaou Z, et al. Proliferation and bone marrow engraftment of AML blasts is dependent on beta-catenin signalling. Br J Haematol. 2011;152:164–74.PubMedCrossRef
90.
Zurück zum Zitat Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14:238–49.PubMedCrossRef Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14:238–49.PubMedCrossRef
91.
Zurück zum Zitat Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.PubMedPubMedCentralCrossRef Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Jagani Z, Dorsch M, Warmuth M. Hedgehog pathway activation in chronic myeloid leukemia. Cell Cycle. 2010;9:3449–56.PubMedCrossRef Jagani Z, Dorsch M, Warmuth M. Hedgehog pathway activation in chronic myeloid leukemia. Cell Cycle. 2010;9:3449–56.PubMedCrossRef
93.
Zurück zum Zitat Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedCrossRef Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedCrossRef
94.
Zurück zum Zitat Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.PubMedCrossRef Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.PubMedCrossRef
95.
Zurück zum Zitat Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163–9.PubMedPubMedCentralCrossRef Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163–9.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Costello RT, Mallet F, Gaugler B, et al. Human acute myeloid leukemia CD34+/CD38-progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.PubMed Costello RT, Mallet F, Gaugler B, et al. Human acute myeloid leukemia CD34+/CD38-progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.PubMed
97.
Zurück zum Zitat Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.PubMedCrossRef Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.PubMedCrossRef
98.
Zurück zum Zitat Li VS, Ng SS, Boersema PJ, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.PubMedCrossRef Li VS, Ng SS, Boersema PJ, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.PubMedCrossRef
100.
Zurück zum Zitat Jeannet G, Scheller M, Scarpellino L, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142–9.PubMedCrossRef Jeannet G, Scheller M, Scarpellino L, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142–9.PubMedCrossRef
101.
Zurück zum Zitat Staal FJ, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21–30.PubMedCrossRef Staal FJ, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21–30.PubMedCrossRef
102.
Zurück zum Zitat Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9.PubMedCrossRef Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9.PubMedCrossRef
103.
Zurück zum Zitat Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.PubMedCrossRef Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.PubMedCrossRef
104.
Zurück zum Zitat Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.PubMedCrossRef Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.PubMedCrossRef
105.
Zurück zum Zitat Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol. 2010;17:294–9.PubMedCrossRef Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol. 2010;17:294–9.PubMedCrossRef
106.
Zurück zum Zitat Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.PubMedCrossRef Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.PubMedCrossRef
108.
Zurück zum Zitat Chen JL, Limnander A, Rothman PB. Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood. 2008;111:1677–85.PubMedCrossRef Chen JL, Limnander A, Rothman PB. Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood. 2008;111:1677–85.PubMedCrossRef
109.
110.
Zurück zum Zitat Guo G, Qiu X, Wang S, et al. Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene. 2010;29:3845–53.PubMedCrossRef Guo G, Qiu X, Wang S, et al. Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene. 2010;29:3845–53.PubMedCrossRef
111.
Zurück zum Zitat Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114:647–50.PubMedPubMedCentralCrossRef Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114:647–50.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Yang J, Wang J, Chen K, et al. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res. 2013;73:4898–908.PubMedCrossRef Yang J, Wang J, Chen K, et al. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res. 2013;73:4898–908.PubMedCrossRef
113.
Zurück zum Zitat Chen K, Yang J, Li J, et al. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget. 2016;7:10073–89.PubMedPubMedCentral Chen K, Yang J, Li J, et al. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget. 2016;7:10073–89.PubMedPubMedCentral
114.
Zurück zum Zitat Fruman DA, Rommel C. PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov. 2011;1:562–72.PubMedCrossRef Fruman DA, Rommel C. PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov. 2011;1:562–72.PubMedCrossRef
116.
Zurück zum Zitat Ng SY, Lin L, Soh BS, et al. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013;29:461–8.PubMedCrossRef Ng SY, Lin L, Soh BS, et al. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013;29:461–8.PubMedCrossRef
117.
118.
Zurück zum Zitat Satpathy AT, Chang HY. Long noncoding RNA in hematopoiesis and immunity. Immunity. 2015;42:792–804.PubMedCrossRef Satpathy AT, Chang HY. Long noncoding RNA in hematopoiesis and immunity. Immunity. 2015;42:792–804.PubMedCrossRef
119.
Zurück zum Zitat Ouyang J, Zhu X, Chen Y, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe. 2014;16:616–26.PubMedCrossRef Ouyang J, Zhu X, Chen Y, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe. 2014;16:616–26.PubMedCrossRef
121.
122.
Zurück zum Zitat Machova Polakova K, Lopotova T, Klamova H, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10:41.PubMedPubMedCentralCrossRef Machova Polakova K, Lopotova T, Klamova H, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10:41.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.PubMedCrossRef Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.PubMedCrossRef
124.
Zurück zum Zitat Martens-Uzunova ES, Bottcher R, Croce CM, et al. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65:1140–51.PubMedCrossRef Martens-Uzunova ES, Bottcher R, Croce CM, et al. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65:1140–51.PubMedCrossRef
127.
128.
Zurück zum Zitat Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.PubMedCrossRef Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.PubMedCrossRef
129.
Zurück zum Zitat Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.PubMedPubMedCentralCrossRef Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRef Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRef
131.
132.
Zurück zum Zitat Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.PubMedCrossRef Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.PubMedCrossRef
133.
Zurück zum Zitat Yendamuri S, Calin GA. The role of microRNA in human leukemia: a review. Leukemia. 2009;23:1257–63.PubMedCrossRef Yendamuri S, Calin GA. The role of microRNA in human leukemia: a review. Leukemia. 2009;23:1257–63.PubMedCrossRef
134.
Zurück zum Zitat Han YC, Park CY, Bhagat G, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207:475–89.PubMedPubMedCentralCrossRef Han YC, Park CY, Bhagat G, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207:475–89.PubMedPubMedCentralCrossRef
135.
136.
Zurück zum Zitat Shaham L, Binder V, Gefen N, et al. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26:2011–8.PubMedCrossRef Shaham L, Binder V, Gefen N, et al. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26:2011–8.PubMedCrossRef
137.
Zurück zum Zitat Morris VA, Zhang A, Yang T, et al. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PLoS One. 2013;8:e75815.PubMedPubMedCentralCrossRef Morris VA, Zhang A, Yang T, et al. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PLoS One. 2013;8:e75815.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Enomoto Y, Kitaura J, Hatakeyama K, et al. Emu/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia. 2011;25:1849–56.PubMedCrossRef Enomoto Y, Kitaura J, Hatakeyama K, et al. Emu/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia. 2011;25:1849–56.PubMedCrossRef
139.
Zurück zum Zitat Chapiro E, Russell LJ, Struski S, et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia. 2010;24:1362–4.PubMedCrossRef Chapiro E, Russell LJ, Struski S, et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia. 2010;24:1362–4.PubMedCrossRef
140.
Zurück zum Zitat Klusmann JH, Li Z, Bohmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010;24:478–90.PubMedPubMedCentralCrossRef Klusmann JH, Li Z, Bohmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010;24:478–90.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med. 2008;205:2499–506.PubMedPubMedCentralCrossRef Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med. 2008;205:2499–506.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Zhou Y, Chen L, Barlogie B, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A. 2010;107:7904–9.PubMedPubMedCentralCrossRef Zhou Y, Chen L, Barlogie B, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A. 2010;107:7904–9.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007;6:1586–93.PubMedCrossRef Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007;6:1586–93.PubMedCrossRef
144.
Zurück zum Zitat Lechman ER, Gentner B, Ng SW, et al. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell. 2016;29:214–28.PubMedPubMedCentralCrossRef Lechman ER, Gentner B, Ng SW, et al. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell. 2016;29:214–28.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.PubMedCrossRef Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.PubMedCrossRef
148.
Zurück zum Zitat Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–7.PubMedCrossRef Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–7.PubMedCrossRef
149.
Zurück zum Zitat Wang Y, He L, Du Y, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16:413–25.PubMedCrossRef Wang Y, He L, Du Y, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16:413–25.PubMedCrossRef
150.
Zurück zum Zitat Zhu P, Wang Y, Huang G, et al. lnc-beta-Catm elicits EZH2-dependent beta-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631–9.PubMedCrossRef Zhu P, Wang Y, Huang G, et al. lnc-beta-Catm elicits EZH2-dependent beta-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631–9.PubMedCrossRef
151.
Zurück zum Zitat Wang X, Sun W, Shen W, et al. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol. 2016;64:1283–94.PubMedCrossRef Wang X, Sun W, Shen W, et al. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol. 2016;64:1283–94.PubMedCrossRef
152.
Zurück zum Zitat Zhou X, Gao Q, Wang J, et al. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol. 2014;133:333–9.PubMedCrossRef Zhou X, Gao Q, Wang J, et al. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol. 2014;133:333–9.PubMedCrossRef
153.
Zurück zum Zitat Sehgal L, Mathur R, Braun FK, et al. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 2014;28:2376–87.PubMedCrossRef Sehgal L, Mathur R, Braun FK, et al. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 2014;28:2376–87.PubMedCrossRef
154.
Zurück zum Zitat Trimarchi T, Bilal E, Ntziachristos P, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.PubMedPubMedCentralCrossRef Trimarchi T, Bilal E, Ntziachristos P, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Sun J, Li W, Sun Y, et al. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res. 2014;42:9588–601.PubMedPubMedCentralCrossRef Sun J, Li W, Sun Y, et al. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res. 2014;42:9588–601.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Hughes JM, Legnini I, Salvatori B, et al. C/EBPalpha-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget. 2015;6:18534–44.PubMedPubMedCentralCrossRef Hughes JM, Legnini I, Salvatori B, et al. C/EBPalpha-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget. 2015;6:18534–44.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Wang X, Chen K, Guo G, et al. Noncoding RNAs and their functional involvement in regulation of chronic myeloid leukemia. Brief Funct Genomics. 2016;15:239–48.PubMedCrossRef Wang X, Chen K, Guo G, et al. Noncoding RNAs and their functional involvement in regulation of chronic myeloid leukemia. Brief Funct Genomics. 2016;15:239–48.PubMedCrossRef
158.
Zurück zum Zitat Guo G, Kang Q, Zhu X, et al. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene. 2015;34:1768–79.PubMedCrossRef Guo G, Kang Q, Zhu X, et al. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene. 2015;34:1768–79.PubMedCrossRef
159.
Zurück zum Zitat Nobili L, Lionetti M, Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget. 2016. Nobili L, Lionetti M, Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget. 2016.
161.
Zurück zum Zitat Tanos V, Ariel I, Prus D, et al. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer. 2004;14:521–5.PubMedCrossRef Tanos V, Ariel I, Prus D, et al. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer. 2004;14:521–5.PubMedCrossRef
162.
163.
Zurück zum Zitat Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32:473–80.PubMedCrossRef Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32:473–80.PubMedCrossRef
164.
Zurück zum Zitat Guo G, Kang Q, Chen Q, et al. High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett. 2014;588:1780–6.PubMedCrossRef Guo G, Kang Q, Chen Q, et al. High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett. 2014;588:1780–6.PubMedCrossRef
165.
Zurück zum Zitat Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–8.PubMedCrossRef Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–8.PubMedCrossRef
167.
Zurück zum Zitat Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14:659–65.PubMedPubMedCentralCrossRef Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14:659–65.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013;500:345–9.PubMedPubMedCentralCrossRef Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013;500:345–9.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Ren S, Wang F, Shen J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49:2949–59.PubMedCrossRef Ren S, Wang F, Shen J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49:2949–59.PubMedCrossRef
171.
Zurück zum Zitat Crea F, Watahiki A, Quagliata L, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74.PubMedPubMedCentralCrossRef Crea F, Watahiki A, Quagliata L, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013;12:433–46.PubMedCrossRef Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013;12:433–46.PubMedCrossRef
173.
Zurück zum Zitat Sun J, Song Y, Chen X, et al. Novel long non-coding RNA RP11-119 F7.4 as a potential biomarker for the development and progression of gastric cancer. Oncol Lett. 2015;10:115–20.PubMedPubMedCentral Sun J, Song Y, Chen X, et al. Novel long non-coding RNA RP11-119 F7.4 as a potential biomarker for the development and progression of gastric cancer. Oncol Lett. 2015;10:115–20.PubMedPubMedCentral
174.
Zurück zum Zitat Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.PubMedPubMedCentralCrossRef Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Qiu JJ, Yan JB. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol. 2015;36:7175–83.PubMedCrossRef Qiu JJ, Yan JB. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol. 2015;36:7175–83.PubMedCrossRef
176.
Zurück zum Zitat Tong X, Gu PC, Xu SZ, et al. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 2015;79:732–7.PubMedCrossRef Tong X, Gu PC, Xu SZ, et al. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 2015;79:732–7.PubMedCrossRef
177.
Zurück zum Zitat Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 2015;14:3.PubMedPubMedCentralCrossRef Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 2015;14:3.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.PubMedCrossRef Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.PubMedCrossRef
179.
Zurück zum Zitat Yang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond). 2015;129:675–85.CrossRef Yang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond). 2015;129:675–85.CrossRef
180.
Zurück zum Zitat Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest. 2014;124:222–36.PubMedCrossRef Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest. 2014;124:222–36.PubMedCrossRef
181.
Zurück zum Zitat Dorrance AM, Neviani P, Ferenchak GJ, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia. 2015;29:2143–53.PubMedPubMedCentral Dorrance AM, Neviani P, Ferenchak GJ, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia. 2015;29:2143–53.PubMedPubMedCentral
182.
Zurück zum Zitat Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.PubMedCrossRef Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.PubMedCrossRef
183.
Zurück zum Zitat Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.PubMedCrossRef Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.PubMedCrossRef
184.
Zurück zum Zitat Papa V, Tazzari PL, Chiarini F, et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia. 2008;22:147–60.PubMedCrossRef Papa V, Tazzari PL, Chiarini F, et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia. 2008;22:147–60.PubMedCrossRef
185.
Zurück zum Zitat Tazzari PL, Tabellini G, Ricci F, et al. Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res. 2008;68:9394–403.PubMedPubMedCentralCrossRef Tazzari PL, Tabellini G, Ricci F, et al. Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res. 2008;68:9394–403.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Konopleva MY, Walter RB, Faderl SH, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res. 2014;20:2226–35.PubMedPubMedCentralCrossRef Konopleva MY, Walter RB, Faderl SH, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res. 2014;20:2226–35.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Sandhofer N, Metzeler KH, Rothenberg M, et al. Dual PI3K/mTOR inhibition shows antileukemic activity in MLL-rearranged acute myeloid leukemia. Leukemia. 2015;29:828–38.PubMedCrossRef Sandhofer N, Metzeler KH, Rothenberg M, et al. Dual PI3K/mTOR inhibition shows antileukemic activity in MLL-rearranged acute myeloid leukemia. Leukemia. 2015;29:828–38.PubMedCrossRef
188.
Zurück zum Zitat Park S, Chapuis N, Saint Marcoux F, et al. A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia. 2013;27:1479–86.PubMedCrossRef Park S, Chapuis N, Saint Marcoux F, et al. A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia. 2013;27:1479–86.PubMedCrossRef
189.
Zurück zum Zitat Chiarini F, Lonetti A, Teti G, et al. A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget. 2012;3:1615–28.PubMedPubMedCentralCrossRef Chiarini F, Lonetti A, Teti G, et al. A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget. 2012;3:1615–28.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Amadori S, Stasi R, Martelli AM, et al. Temsirolimus, an mTOR inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML-1107). Br J Haematol. 2012;156:205–12.PubMedCrossRef Amadori S, Stasi R, Martelli AM, et al. Temsirolimus, an mTOR inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML-1107). Br J Haematol. 2012;156:205–12.PubMedCrossRef
191.
Zurück zum Zitat Attar EC, Amrein PC, Fraser JW, et al. Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk Res. 2013;37:1016–20.PubMedPubMedCentralCrossRef Attar EC, Amrein PC, Fraser JW, et al. Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk Res. 2013;37:1016–20.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Horton TM, Perentesis JP, Gamis AS, et al. A Phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61:1754–60.PubMedPubMedCentralCrossRef Horton TM, Perentesis JP, Gamis AS, et al. A Phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61:1754–60.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.PubMedPubMedCentralCrossRef Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.PubMedPubMedCentralCrossRef
Metadaten
Titel
Understanding of leukemic stem cells and their clinical implications
verfasst von
Xuefei Wang
Shile Huang
Ji-Long Chen
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2017
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-016-0574-7

Weitere Artikel der Ausgabe 1/2017

Molecular Cancer 1/2017 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.