Skip to main content
Erschienen in: Fluids and Barriers of the CNS 1/2018

Open Access 01.12.2018 | Review

Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood–brain barrier models

verfasst von: Midrelle E. Noumbissi, Bianca Galasso, Monique F. Stins

Erschienen in: Fluids and Barriers of the CNS | Ausgabe 1/2018

Abstract

The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Abkürzungen
ACM
astrocyte-conditioned medium
BBB
blood–brain barrier
CEC
cerebral microvascular endothelial cells
CM
cerebral malaria
HAND
HIV-associated neurocognitive disorders
HSPG
heparan sulfate proteoglycans
NVU
neurovascular unit
TEER
trans-endothelial electrical resistance
TGF
transforming growth factor
TIMP
tissue inhibitors of metalloproteinases
MMP
matrix metalloproteinases
CNS
central nervous system
HIV
human immunodeficiency virus
TJ
tight junction
VEGF
vascular endothelial growth factor
NO
nitric oxide
IL
interleukins
TNF-α
tumor necrosis factor-α
P-gp 1
p-glycoprotein 1
γ-GTP
gamma-glutamyl transpeptidase
GLUT-1
glucose transporter-1
OPC
oligodendrocyte progenitor cell
NF-κB
nuclear factor kappa-light-chain-enhancer of activated B cells
ZO
zonula occludens proteins
JAM
junctional adhesion molecules

Background: the blood–brain barrier as part of the neurovascular unit

The BBB separates the peripheral blood circulation from the brain parenchyma to allow for optimal functioning of the central nervous system (CNS). The actual barrier site is formed by CECs that line the cerebral vasculature and tight junctional (TJ) proteins that securely connect two adjacent CECs, thus limiting paracellular transport. Transport of substances across the BBB is generally dependent on the characteristics of the compound that crosses, such as lipid- versus water-solubility.
Lipid-soluble compounds can cross relatively easily into the brain: for example, certain drugs, e.g., anesthetics, drugs of abuse, and barbiturates, dissolve into the cell membranes of CECs and diffuse across the BBB into the CNS. Other compounds can cross the BBB via more specific transcellular pathways which include: (i) carrier-mediated transport of molecules, such as glucose and amino acids, (ii) receptor-mediated endocytosis and transcytosis of large macromolecules like transferrin, and (iii) adsorptive-mediated endocytosis and transcytosis of charged plasma proteins (see also reviews by Abbott et al.) [1, 2]. Additionally, paracellular transport occurs between two adjacent CECs, allowing for diffusion of compounds such as small, water-soluble compounds, e.g., ions and small hydrophilic solutes. The BBB also allows for trafficking of immune cells into the brain as a part of regular immune surveillance. Certain pathogens, such as human immunodeficiency virus (HIV), hijack these natural mechanisms and use immune cells to gain entry into the CNS; the so called “Trojan Horse” mechanism [3]. In general, immune cells cross the BBB via the paracellular pathway, but it is also possible for them to utilize transcellular pathways [1, 2, 4]. Together, all these transport and immune surveillance pathways play a major role in maintaining CNS homeostasis.
The BBB-endothelium is a key component of the NVU. The concept of the NVU states that in order to maintain CNS homeostasis, there is cross talk between the different cellular components of the NVU including neurons, astrocytes, glia, pericytes, and CECs [5]. Aberrant signaling due to infections or disease-mediated activation of any of its constituent components can lead to the disturbance of brain homeostasis and functioning [1, 6, 7]. Key functions of the NVU include maintaining the CEC phenotype, coupling blood flow to brain activity, linking neurogenesis to new blood vessel formation, and regulating cellular interactions between the vasculature, neurons, and glial cells (see also reviews by [5, 810]).
Astrocytes are specialized glial cells which function in maintaining a healthy CNS [1120]. Within the NVU, astrocytes regulate CEC phenotype by increasing CEC barrier integrity [2123] and enhancing TJ structures [2427]. Additionally, astrocytes were shown to increase the expression of specific transporters on CECs such as Na–K–Cl and L-system amino acid transporters [2830]. Factors involved in regulating CEC phenotypes include; glial cell-derived neurotrophic factor (GDNF) [31]; transforming growth factor (TGF)-β1 [32]; retinoic acid (RA) [33]; and vascular endothelial growth factor-A (VEGF-A) [3436].
Pericytes are perivascular cells that wrap around capillaries in the brain and are part of the NVU [37]. They are characterized by the presence of smooth muscle actin fibers and therefore may play a role in local regulation of vasodilatation and constriction [38]. Pericytes have also been shown to increase the BBB integrity [39, 40] and the proportion of TJ proteins (occludin and claudin-5) [41]. A deficiency of pericytes, as seen in Pdgfrb+/− mice, resulted in decreased capillary length [42] and a concomitant increase in BBB permeability due to an increase in transcytosis across CECs [43], decreased expression of TJ and scaffolding proteins (ZO-1, occludin, and claudin), and the adherens junction protein VE-Cadherin [42]. This change in brain vascular permeability was heterogeneous across the CNS: the highest increase occurred in the cortex, striatum, and hippocampus while there was a significantly lower change in permeability in the interbrain (or diencephalon), midbrain, and cerebellum [44, 45].
Besides astrocytes and pericytes that interact closely with the CECs, microglia also affect the BBB-endothelial phenotype and function. Microglia are derived from the mesodermal lineage and migrate into the CNS early in embryonic development to become the resident immune cells of the brain [4648]. Upon activation by, for example, microbial infections or traumatic brain injury, microglia can differentiate into the pro-inflammatory M1 or anti-inflammatory M2 phenotypes with a concurrent morphological shift from small cell bodies with long processes to enlarged amoeboid-like cells [49]. The M1 microglia promote BBB opening by secreting pro-inflammatory cytokines, such as interleukin-1 β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). In contrast, M2 microglia promote immunosuppression via release of TGF-β and angiogenesis through VEGF release in tumors [49]. VEGF from microglia were also shown to enhance BBB permeability via downregulation of ZO-1 [6, 5052].
It should be noted that CECs can also reciprocally influence the functioning of its neighboring cells within the NVU [5, 10, 53]. Guo et al. [54] demonstrated that secretion of brain-derived neurotrophic factor (BDNF) by CECs was vital for neuroprotection. In addition, soluble factors secreted by CECs were found to enhance the proliferation of oligodendrocyte progenitor cells (OPC); which are precursors of oligodendrocytes as well decrease apoptotic OPC death in vitro [55, 56]. Furthermore, extracellular vesicles derived from rat brain CECs were shown to have a role in promoting OPC survival, proliferation and motility in a dose-dependent manner [57]. However, the mechanisms underlying these effects are not well understood.
Another important part of the NVU is the extracellular matrix (ECM), which also contributes to specific CEC phenotypes and functions [58, 59]. ECM refers to the non-cellular component of the NVU deposited in the space between CECs, pericytes, and astrocytic end-feet. The ECM is composed of a mixture of proteins, including different collagens, laminins, fibrillins, fibronectin, and vitronectin. CECs, astrocytes, and pericytes deposit various isoforms of laminin (α2 and α4) in ECM; these play a pivotal role in regulating BBB integrity [6063]. Laminin-10 was shown to promote repair in an in vitro model of BBB hypoxic injury [64]. Furthermore, extracellular matrix proteins such as heparan sulfate proteoglycans (HSPG), perlecan, collagen IV [65, 66], and integrin-matrix interactions [67, 68] have been implicated in regulating BBB integrity. Collagen type IV alpha 1 (COL4A1) and collagen type IV alpha 2 (COL4A2) are the most abundant form of collagen IV in ECM proteins [69]. COL4A1 and COL4A2 are highly conserved in humans and mutations in one or both of them have been linked to various organ diseases, including cerebral diseases, such as porencephaly and cerebrovascular/intercerebral hemorrhages [7087].
Regulatory enzymes, such as matrix metalloproteinases (MMPs) are also associated with the ECM [8892]. Both MMPs and tissue inhibitors of metalloproteinases (TIMPs), are secreted by CECs, astrocytes, and pericytes and are involved in modifying the ECM and in the regulation of BBB integrity [93, 94]. For example, pericytes can regulate CE-derived MMP-9 production and in the absence of pericytes, there is a decrease in MMP-9 levels resulting in increased trans-endothelial electrical resistance (TEER) of CEC monolayers [94].

Heterogeneity in cellular composition of the brain and its influence on the BBB

The human brain is divided into three main regions, each with distinct functions. These include the brainstem, which regulates automatic functions such as breathing and digestion, the cerebellum, which coordinates muscle movement and balance, and the cerebrum which is involved in higher functions such as learning and interpreting speech and touch. The brain is also segregated into cortical grey matter (GM) and white matter (WM); where the cellular composition differs considerably between GM and WM [9597].
Although GM and WM have approximately equal volumes [98], the ratio of non-neuronal to neuronal cells is 1.5:1 in the cortical GM compared to 15:1 in the cortical WM [95]. The GM has a higher neuronal content including neuronal cell bodies, dendrites, non-myelinated axons, to a lesser extent of myelinated neurons, and glial cells, including resident astrocytes [11, 96]. The WM is predominantly composed of both myelinated and non-myelinated axons, astrocytes, and myelin-producing glia [96, 97]. Additionally, there are differences in morphology between astrocytes residing in GM and WM. GM astrocytes, traditionally called protoplasmic astrocytes, display stem branches with many branching processes, while in WM, astrocytes exhibit more fiber-like processes [11] (Fig. 1). Advancement of imaging techniques and investigations into their physiology have led to the use of a variety of names for these different astrocytes to better reflect individual characteristics. Despite that, currently there is no uniform astrocyte nomenclature [99]. Differential characteristics include higher levels of vimentin, nestin and glial fibrillary acidic protein in astrocytes derived from WM than from GM [99]. Although there is equal distribution of glucose transporter-1 (GLUT-1) 52 kDa isoform across the GM and WM astrocytes [100], the GLUT-1 45 kDa isoform is mainly observed on the GM astrocytes [101]. This suggests that besides phenotypic differences between astrocytes residing in GM versus WM, functional differences are also present. Taken together, these functional astrocyte differences between WM and GM, in turn, may affect brain vasculature in these different areas. However, the molecular mechanisms whereby these various astrocytes affect the CEC characteristics in these brain areas are unclear [99].
Differences in both density and orientation also exist between the GM and WM vasculature. Most apparent is the higher blood vessel density in GM than that in WM [102]. Also, the arrangements of blood vessels differs: cerebellar GM vessels are arranged perpendicular to the pyramidal cell layer whereas the WM vessels are longer and oriented parallel to axonal fibers [102].
In addition to variances in general structure and organization of the brain vasculature, there are differences in endothelial barrier function between anatomical regions. Apart from a high permeability in the vasculature of the Area Postrema and choroid plexus, there are differences in the molecular composition of the vascular junctional proteins that may reflect differences in functionality of the BBB. For example, expression of occludin, claudin-5, and adherens junction α-catenin is higher in WM compared to GM [96]. Accordingly, there is a higher barrier function seen in primary CEC cultures derived from WM compared to those from GM [96]. Moreover, cytoskeletal structural differences in the vasculature between WM and GM were demonstrated [103]. Interestingly, astrocytic end feet expressed lower levels of GFAP in GM compared with WM and this correlated with a higher tendency of hemorrhage in the GM vasculature [103].
Apart from these differences in the vasculature of the WM and GM, CEC gene expression also differs along the length of the cerebral vasculature tree (arterioles, capillaries, and venules) [104, 105]. For example, CEC gene expression related to solute transport, e.g., monocarboxylate transporter 1 and plasma membrane Ca2+ ATPase Type 2, were significantly increased in capillaries compare to venules [105]. Differences also exist between cerebral and pial (of pia mater origin) microvessels in the brain [106108]. Even though these micovessels share some common characteristics [106], pial microvessels lack envelopment by astrocytic end feet resulting in a diverse appearance of tight junctions and endothelial barrier antigens [108]. Similarly, differences in the expression of astrocyte dependent enzymes such as γ-glutamyl transpeptidase (GGTP) and alkaline phosphatase (AP) [107] were observed, such as absence of expression of GGTP in rat pial microvessels compared to a strong expression in cerebral vessels [107]. In summary, these studies clearly demonstrate significant heterogeneity in the cerebral vasculature, as well as differences in the composition of NVU components between the GM and WM that may be related to differential CEC gene expression along the vascular tree.

Association of brain vasculature with GM and WM neuropathologies

Considering the existence of structural and functional variations in the cerebral vasculature between various regions of the brain, it is imperative to consider these vascular differences when evaluating neuropathologies. Here, we will briefly discuss select neuropathologies that involve an activation and/or dysfunction of the brain vasculature and its association with regional pathology, namely multiple sclerosis (MS), schizophrenia, HIV-associated neurocognitive disorders (HAND), and cerebral malaria (CM).
MS is an autoimmune disease of the CNS and its widely studied neuropathology exhibits region-specific differences in the brain. MS presents with areas of focal neuronal demyelination, axonal loss, immune cell infiltration, and involvement of the BBB [109114]. MS lesions usually develop alongside brain vasculature and involve disruption of the BBB structure and function [115]. MS presentations differ from GM, as lesions in the WM involve disruption of the BBB leading to immune cell infiltration into the CNS, whereas this is not always noted in lesions in the GM vasculature [116, 117]. Furthermore, the cuprizone experimental mouse model of MS also shows increased BBB activation in WM compared to the GM [118120]. These differences in the representation of MS in the brain GM and WM is most likely due to the inherent differences in the brain GM versus WM vasculature.
Schizophrenia, a neuropsychiatric disorder, is characterized by significant brain abnormality and regional variability, including involvement of WM pathologies, especially those involving frontal, fronto-temporal, and fronto-limbic connections [121124]. Also here, regional structural differences have been observed, e.g., WM myelin disturbance, deterioration of the neuropil, loss of synaptic connectivity, and functional impairment of oligodendrocytes [125, 126]. Postmortem brain studies have reported higher expression of pro-inflammatory cytokines like IL-6, TNF-α, and transcription factor NF-κB in the WM of the frontal cortex compared to the GM [127129]. In individuals with first-episode schizophrenia, signs of axonal degeneration appeared only in the focal areas of frontal lobe WM areas [130]. Similarly, in patients with new-onset schizophrenia, WM inflammation was associated with elevated serum S100B levels, implicating WM inflammation coupled with BBB hyper-permeability [131]. A recent study by Greene et al. [132] was the first to use molecular-based evidence to show involvement of the vasculature and BBB alterations in schizophrenia. Thus, the existence of vascular heterogeneity may contribute to the differential presentation of schizophrenia pathologies in GM versus WM regions of the brain.
In HIV-1 infected patients, the virus can enter into the CNS in the early stages of infection, eventually leading to neurocognitive impairments, including HIV-associated neurocognitive deficits (HAND). Both in vitro and in vivo studies have demonstrated activation of the brain endothelium and functional impairment of the BBB, including upregulation of cell adhesion molecules, downregulation of TJ complex components, and enhanced passage of immune cells across the BBB into the CNS, resulting in “cuffing” [133, 134]. Brain autopsy studies also showed a correlation of the severity of HAND with WM degeneration and gliosis [135, 136]. Interestingly, the brain vasculature appears more compromised in WM, as immunostaining for BBB junctional molecules, such as occludin and ZO-1, was either absent or more fragmented in the WM than in the GM [137]. Because of the brain vasculature’s involvement in HAND, brain vascular heterogeneity is also very likely to play a role in the manifestation of the differential pathologies in various brain regions,
Another infectious disease involving brain vascular inflammation/activation is CM, a severe neurological complication resulting from infection with the Plasmodium falciparum parasite. The hallmark of CM is sequestration of P. falciparum-infected red blood cells (Pf-IRBC) inside the vasculature, which leads to the activation of the BBB, as shown by increased ICAM-1 expression and decreased junctional markers [138143]. Postmortem studies of brains from human CM patients show marked pathological differences between WM and GM. Highly apparent is the abundance of hemorrhagic punctae in the WM, associated with increased fibrin accumulation [144147]. These differences in pathologies could be related to differences in the vasculature between WM and GM.
As shown previously and outlined above, there are clear differences in protein expression along the vascular tree [148]. However, limited information exists in terms of BBB physiology and EC phenotype in different regions of the brain [96, 99, 148] and how this relates to neuro-disease pathogenesis. Taken together, the above discussed neurological conditions and infections underline existence of regional pathological differences in the WM versus the GM as well as the involvement of brain vasculature. Seemingly, more pathologies present in the WM than in GM areas. Therefore, we hypothesize that these observed brain vascular differences between the GM and WM areas significantly contribute to their differential pathologies.

In vitro modeling of the BBB/NVU with relevance to neuropathologies

To study neuropathologies involving the vasculature of the brain, various in vitro BBB models have been developed, mostly from CEC isolated from GM areas. Initially, in vitro models of the BBB were single-cell cultures composed of a monolayer of primary CECs derived from either human, bovine, porcine, or murine sources [149154]. Primary CECs have a limited lifespan and exhibit significant donor-to-donor variability, which can affect interpretation of experimental outcomes. To study human disease, human derived cells are also preferential. As a result of this, immortalized brain EC lines, such as human derived hCMEC/D3, were developed as alternatives to primary CECs [155159], but these cells still showed relatively low TEER. More recently, human pluripotent stem cell (hPSC)-derived CECs have been employed as a potential cell source and have shown significantly higher barrier integrity compared to the primary and immortalized cell lines when cultured in the presence of retinoic acid (RA) [154, 160166]. Although the high barrier resistance could suggest BBB phenotype for the hPSCs, a more epithelial phenotype cannot be excluded. Besides TEER, other markers have been evaluated, though in a limited fashion. De Stefano et al. [167] demonstrated that there were no significant morphological changes in both hPSC-derived CECs and immortalized human CECs in response to fluid shear stress. They also showed that shear-induced motility was significantly reduced in hPSC-derived CECs [167]. However, these findings do not demonstrate whether these cells are representative of GM or WM vasculature and additional markers would need to be tested to fully validate the hPSCs for BBB modeling.
As outlined above, various cellular components of the NVU influence CEC phenotype and cerebrovascular integrity. In the earlier models, other cellular NVU components were not incorporated and there was minimal consideration of environmental influences, such as blood flow and pressure [149, 168]. To further improve specific BBB characteristics, co-culturing with cellular components of the NVU, specifically astrocytes or pericytes, as well as the addition of astrocyte- or pericyte-conditioned medium, has been utilized [21, 39, 40, 169180]. Selection of appropriate culture media in co-culture experiments has been shown to be an important factor influencing the BBB integrity [181183]. Several studies have demonstrated that the direct CEC environment, e.g., cell–cell contact, soluble factors or extracellular vesicles, is critical for the development and maintenance of the BBB properties and thus influence the cellular function within the NVU [6, 23, 41, 184]. Therefore, in order to obtain a physiologically relevant in vitro BBB model, the effect of these influences from within the NVU and how this may affect the BBB functionality should be considered, including a WM versus GM environment.
Physical factors and mechanical forces, such as shear stress and cyclic strain due to flowing blood, also affect endothelial structure and physiology [185, 186]. In vitro studies demonstrated that flow improved the barrier integrity of CECs [32, 187190]. In contrast, supra-physiological shear stress and pulsatile flow can lead to the deterioration of BBB integrity [191]. Loss of blood flow promoted cytokine release (IL-1β, IL-6, and TNF-α) which, in turn, mediated a decrease in TEER, resulting in BBB leakage [192]. Additionally, both substrate elastic modulus [193195] and ECM composition [196, 197] affect endothelial responses, including cytoskeletal realignment, inflammation, and cell morphology, to shear stress. When designing an in vitro model of the BBB, substrate curvature (flat or curved surfaces) and culture dimensionality should also be considered. Ye et al. [198] demonstrated that changing the substrate curvature from flat to curved resulted in a change in cell orientation of the CECs [198]. Additionally, three-dimensional in vitro BBB models were shown to restrict viral infections compared to the two-dimensional models [199]. Together, these studies demonstrate the numerous factors that may need to be considered when designing a physiologically relevant in vitro BBB model.
It is very challenging to incorporate all of the aforementioned factors that influence the BBB. Advancements in technology have provided additional options for in vitro BBB modeling to better mimic the BBB biophysical environment, e.g., addition of flow and dimensionality/curvature such as lab on a chip models [200]. They also allow for the controlled application of inflammatory stimuli to study the responses of various brain cell types during neuroinflammation [201203]. Utilizing the BBB-on-chip model, the TEER of CECs cultured on microfluidic chips (36.9 Ω cm2) was higher than that of CECs grown on Transwell™ chambers (28.2 Ω cm2) [203]. Similar technology has also been used to create a NVU on a chip by co-culturing CECs with pericytes, neurons, and astrocytes in a three-dimensional collagen I matrix [201]. Recently, cylindrical collagen gels were generated using the “viscous fingering” method within 3D BBB chips composed of CECs, pericytes, and astrocytes. Notable findings include that (1) the CECs generated an abluminal basement membrane and (2) the astrocytes in combination with CECs significantly reduced the permeability (a phenomenon that was not observed with EC-pericyte co-culture) [202]. Additionally, a recent study used a sophisticated triple BBB co-culture of a human brain endothelial cell line with primary astrocytes and brain pericytes assembled in a poly(dimethylsiloxane)-based chip that also allowed for simultaneous assessment of flow, morphology, TEER, and permeability measurements [204].
Thus, advantages of the BBB-on-chip include: (i) incorporation of flow (exposure of CECs to shear stress); (ii) culture of CECs in a three-dimensional environment; and (iii) measurement of physiological functions (such as permeability and TEER) in real-time along with fluorescence imaging of cell–cell junctions [203, 205]. Although current technical advances allow for the development of organ-on-chip systems, this technology is highly specialized and requires specialized facilities for fabrication of these devices. The major disadvantage of these lab-on-a-chip systems is their limited commercial availability and high price point [200]. To our knowledge, at this point, no (affordable) commercial system is available that incorporates all the desired parameters.
In summary, these studies outline important design considerations for creating in vitro models of the BBB. Additionally, they demonstrate recent advancements in technology that may be used to model the regional heterogeneity of the brain parenchyma. A key assumption of most in vitro model designs is that the BBB/CEC phenotype is homogeneous across the brain. However, as discussed above, phenotypic differences exist along the vascular tree [105, 148] and in varying brain regions [44, 96]. This, coupled with the knowledge that certain neuropathologies differentially affect WM and GM, should prompt development of more representative in vitro models of the BBB that can better mimic the particular in vivo environment of the neuropathological condition, e.g., culturing CEC with either WM or GM characteristics. Exposing these CEC’s to their appropriate brain environment may confer and/or approximate these characteristics and provide a better option for BBB- neurodisease modeling.

Conclusions and future directions

Regional cellular heterogeneity in the brain parenchyma may contribute to the differences in CEC phenotype within the cerebral microvasculature. The two major regions of the brain, the GM and WM, have distinct vascular patterns, cellular compositions, and molecular phenotypes. These relative superficial differences in the brain vasculature warrant deeper investigation of the specific regional variability of the BBB. A comprehensive analysis of molecular phenotypes and functional differences of the vasculature between brain regions would allow for better understanding of diverse neuro-pathologies. This may have further implications for the design of better and more targeted therapeutic interventions in neurovascular diseases. In vitro BBB modeling offers possibilities for targeted and controlled assessment of BBB pathogenesis but, thus far, primarily relies on the assumption of homogeneity of the BBB across the various brain regions. In this review, we have highlighted some region-specific differences in the BBB and propose design considerations for developing more representative models of the BBB by incorporating these regional heterogeneities. A more comprehensive in vitro BBB design should also encompass the region-specificity of the NVU- brain milieu for it to translate effectively to different neurovascular disease conditions of interest.

Authors’ contributions

All authors contributed to the writing, editing, and final preparation of this manuscript for publication. All authors read and approved the final manuscript.

Acknowledgements

Authors appreciate scientific inputs from Dr. Carlos A. Pardo-Villamizar. This manuscript was supported by Bloomberg Philanthropies, NIH R21 RNS090233A to MFS and NIH R01HL130649 to MFS.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Ethics approval for human subjects or use of experimental and/or animal procedures, etc. are not applicabe for this review paper.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metabol Dis. 2013;36:437–49.CrossRef Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metabol Dis. 2013;36:437–49.CrossRef
2.
Zurück zum Zitat Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.PubMedCrossRef
3.
Zurück zum Zitat Hazleton JE, Berman JW, Eugenin EA. Novel mechanisms of central nervous system damage in HIV infection. HIV AIDS. 2010;2:39–49. Hazleton JE, Berman JW, Eugenin EA. Novel mechanisms of central nervous system damage in HIV infection. HIV AIDS. 2010;2:39–49.
4.
Zurück zum Zitat Wolburg H, Wolburg-Buchholz K, Engelhardt B. Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol. 2005;109:181–90.PubMedCrossRef Wolburg H, Wolburg-Buchholz K, Engelhardt B. Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol. 2005;109:181–90.PubMedCrossRef
5.
Zurück zum Zitat Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, et al. Cell–cell signaling in the neurovascular unit. Neurochem Res. 2007;32:2032–45.PubMedCrossRef Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, et al. Cell–cell signaling in the neurovascular unit. Neurochem Res. 2007;32:2032–45.PubMedCrossRef
7.
Zurück zum Zitat Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedCrossRef Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedCrossRef
8.
Zurück zum Zitat Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef
10.
Zurück zum Zitat Lok J, Wang XS, Xing CH, Maki TK, Wu LM, Guo SZ, et al. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther. 2015;21:304–8.PubMedCrossRef Lok J, Wang XS, Xing CH, Maki TK, Wu LM, Guo SZ, et al. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther. 2015;21:304–8.PubMedCrossRef
11.
Zurück zum Zitat Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.PubMedCrossRef Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.PubMedCrossRef
12.
Zurück zum Zitat Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6:43–50.PubMedCrossRef Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6:43–50.PubMedCrossRef
13.
Zurück zum Zitat Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369.PubMedCrossRef Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369.PubMedCrossRef
14.
Zurück zum Zitat J-m Zhang, H-k Wang, C-q Ye, Ge W, Chen Y, Z-l Jiang, et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron. 2003;40:971–82.CrossRef J-m Zhang, H-k Wang, C-q Ye, Ge W, Chen Y, Z-l Jiang, et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron. 2003;40:971–82.CrossRef
15.
Zurück zum Zitat Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001;292:923–6.PubMedCrossRef Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001;292:923–6.PubMedCrossRef
16.
Zurück zum Zitat Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.PubMedCrossRef Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.PubMedCrossRef
17.
Zurück zum Zitat Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA. Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([RR*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl) propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther. 2007;321:45–50.PubMedCrossRef Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA. Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([RR*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl) propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther. 2007;321:45–50.PubMedCrossRef
18.
Zurück zum Zitat Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–71.PubMedCrossRef Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–71.PubMedCrossRef
19.
Zurück zum Zitat Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, et al. An inwardly rectifying K+ channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol. 2001;281:922–31.CrossRef Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, et al. An inwardly rectifying K+ channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol. 2001;281:922–31.CrossRef
20.
Zurück zum Zitat Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 2004;129:877–96.PubMedCrossRef Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 2004;129:877–96.PubMedCrossRef
21.
Zurück zum Zitat Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, et al. A cell culture model of the blood–brain barrier. J Cell Biol. 1991;115:1725–35.PubMedCrossRef Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, et al. A cell culture model of the blood–brain barrier. J Cell Biol. 1991;115:1725–35.PubMedCrossRef
22.
Zurück zum Zitat Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25:59–127.PubMedCrossRef Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25:59–127.PubMedCrossRef
23.
24.
25.
Zurück zum Zitat Wolburg H, Neuhaus J, Kniesel U, Krauß B, Schmid E-M, Ocalan M, et al. Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci. 1994;107:1347–57.PubMed Wolburg H, Neuhaus J, Kniesel U, Krauß B, Schmid E-M, Ocalan M, et al. Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci. 1994;107:1347–57.PubMed
26.
Zurück zum Zitat Volgina N, Gurina O, Grinenko N, Baklaushev V, Ivanova N, Chekhonin V. Expression of tight junction proteins by umbilical vein epithelial cells co-cultured with allogenic astrocytes. Bull Exp Biol Med. 2012;154:124–9.PubMedCrossRef Volgina N, Gurina O, Grinenko N, Baklaushev V, Ivanova N, Chekhonin V. Expression of tight junction proteins by umbilical vein epithelial cells co-cultured with allogenic astrocytes. Bull Exp Biol Med. 2012;154:124–9.PubMedCrossRef
27.
Zurück zum Zitat Risau W, Hallmann R, Albrecht U, Henke-Fahle S. Brain induces the expression of an early cell surface marker for blood–brain barrier-specific endothelium. EMBO J. 1986;5:3179.PubMedPubMedCentralCrossRef Risau W, Hallmann R, Albrecht U, Henke-Fahle S. Brain induces the expression of an early cell surface marker for blood–brain barrier-specific endothelium. EMBO J. 1986;5:3179.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Sun D, Lytle C, O’Donnell ME. Astroglial cell-induced expression of Na–K–Cl cotransporter in brain microvascular endothelial cells. Am J Physiol Cell Physiol. 1995;269:C1506–12.CrossRef Sun D, Lytle C, O’Donnell ME. Astroglial cell-induced expression of Na–K–Cl cotransporter in brain microvascular endothelial cells. Am J Physiol Cell Physiol. 1995;269:C1506–12.CrossRef
29.
Zurück zum Zitat O’Donnell ME, Martinez A, Sun D. Cerebral microvascular endothelial cell Na–K–Cl cotransport: regulation by astrocyte-conditioned medium. Am J Physiol. 1995;268:C747–54.PubMedCrossRef O’Donnell ME, Martinez A, Sun D. Cerebral microvascular endothelial cell Na–K–Cl cotransport: regulation by astrocyte-conditioned medium. Am J Physiol. 1995;268:C747–54.PubMedCrossRef
30.
Zurück zum Zitat Chishty M, Reichel A, Begley D, Abbott N. Glial induction of blood–brain barrier-like L-system amino acid transport in the ECV304 cell line. Glia. 2002;39:99–104.PubMedCrossRef Chishty M, Reichel A, Begley D, Abbott N. Glial induction of blood–brain barrier-like L-system amino acid transport in the ECV304 cell line. Glia. 2002;39:99–104.PubMedCrossRef
31.
Zurück zum Zitat Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999;261:108–12.PubMedCrossRef Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999;261:108–12.PubMedCrossRef
32.
Zurück zum Zitat Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.PubMedPubMedCentralCrossRef Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kong L, Wang Y, Wang XJ, Wang XT, Zhao Y, Wang LM, et al. Retinoic acid ameliorates blood–brain barrier disruption following ischemic stroke in rats. Pharmacol Res. 2015;99:125–36.PubMedCrossRef Kong L, Wang Y, Wang XJ, Wang XT, Zhao Y, Wang LM, et al. Retinoic acid ameliorates blood–brain barrier disruption following ischemic stroke in rats. Pharmacol Res. 2015;99:125–36.PubMedCrossRef
34.
Zurück zum Zitat Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106:1977–82.PubMedPubMedCentralCrossRef Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106:1977–82.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.PubMedPubMedCentralCrossRef Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, et al. Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem. 2014;129:120–9.PubMedCrossRef Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, et al. Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem. 2014;129:120–9.PubMedCrossRef
37.
Zurück zum Zitat Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res. 1998;53:637–44.PubMedCrossRef Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res. 1998;53:637–44.PubMedCrossRef
39.
Zurück zum Zitat Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27:687–94.PubMedCrossRef Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27:687–94.PubMedCrossRef
40.
Zurück zum Zitat Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63.PubMedCrossRef Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63.PubMedCrossRef
41.
Zurück zum Zitat Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468:562–6.PubMedPubMedCentralCrossRef Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468:562–6.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68:409–27.PubMedPubMedCentralCrossRef Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68:409–27.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–61.PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–61.PubMedCrossRef
44.
Zurück zum Zitat Villasenor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Gruninger F, et al. Region-specific permeability of the blood–brain barrier upon pericyte loss. J Cereb Blood Flow Metab. 2017;37:3683–94.PubMedCrossRefPubMedCentral Villasenor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Gruninger F, et al. Region-specific permeability of the blood–brain barrier upon pericyte loss. J Cereb Blood Flow Metab. 2017;37:3683–94.PubMedCrossRefPubMedCentral
45.
Zurück zum Zitat Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000;886:113–64.PubMedCrossRef Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000;886:113–64.PubMedCrossRef
46.
Zurück zum Zitat Chan W, Kohsaka S, Rezaie P. The origin and cell lineage of microglia—new concepts. Brain Res Rev. 2007;53:344–54.PubMedCrossRef Chan W, Kohsaka S, Rezaie P. The origin and cell lineage of microglia—new concepts. Brain Res Rev. 2007;53:344–54.PubMedCrossRef
47.
Zurück zum Zitat Cuadros MA, Navascués J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56:173–89.PubMedCrossRef Cuadros MA, Navascués J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56:173–89.PubMedCrossRef
48.
Zurück zum Zitat Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.PubMedCrossRef Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.PubMedCrossRef
49.
Zurück zum Zitat Stankovic ND, Teodorczyk M, Ploen R, Zipp F, Schmidt MH. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.CrossRef Stankovic ND, Teodorczyk M, Ploen R, Zipp F, Schmidt MH. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.CrossRef
50.
Zurück zum Zitat Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–60.PubMedCrossRef Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–60.PubMedCrossRef
51.
Zurück zum Zitat Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.PubMedCrossRefPubMedCentral Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Librizzi L, Noe F, Vezzani A, de Curtis M, Ravizza T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood–brain barrier damage. Ann Neurol. 2012;72:82–90.PubMedCrossRef Librizzi L, Noe F, Vezzani A, de Curtis M, Ravizza T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood–brain barrier damage. Ann Neurol. 2012;72:82–90.PubMedCrossRef
53.
Zurück zum Zitat Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35:354–6.PubMedCrossRef Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35:354–6.PubMedCrossRef
54.
Zurück zum Zitat Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA. 2008;105:7582–7.PubMedPubMedCentralCrossRef Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA. 2008;105:7582–7.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Arai K, Lo EH. An oligovascular niche: cerebral Endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci. 2009;29:4351–5.PubMedPubMedCentralCrossRef Arai K, Lo EH. An oligovascular niche: cerebral Endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci. 2009;29:4351–5.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Iijima K, Kurachi M, Shibasaki K, Naruse M, Puentes S, Imai H, et al. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions. J Neurochem. 2015;135:539–50.PubMedCrossRef Iijima K, Kurachi M, Shibasaki K, Naruse M, Puentes S, Imai H, et al. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions. J Neurochem. 2015;135:539–50.PubMedCrossRef
57.
Zurück zum Zitat Kurachi M, Mikuni M, Ishizaki Y. Extracellular vesicles from vascular endothelial cells promote survival, proliferation and motility of oligodendrocyte precursor cells. PLoS ONE. 2016;11:e0159158.PubMedPubMedCentralCrossRef Kurachi M, Mikuni M, Ishizaki Y. Extracellular vesicles from vascular endothelial cells promote survival, proliferation and motility of oligodendrocyte precursor cells. PLoS ONE. 2016;11:e0159158.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Zobel K, Hansen U, Galla H-J. Blood–brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 2016;365:233–45.PubMedCrossRef Zobel K, Hansen U, Galla H-J. Blood–brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res. 2016;365:233–45.PubMedCrossRef
59.
Zurück zum Zitat Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.PubMedPubMedCentralCrossRef Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002;22:1194–202.PubMedPubMedCentralCrossRef Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002;22:1194–202.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci. 2014;34:15260–80.PubMedCrossRefPubMedCentral Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci. 2014;34:15260–80.PubMedCrossRefPubMedCentral
62.
Zurück zum Zitat Yao Y, Chen Z-L, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.PubMedCrossRef Yao Y, Chen Z-L, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.PubMedCrossRef
64.
Zurück zum Zitat Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation. 2016;13:25.PubMedPubMedCentralCrossRef Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation. 2016;13:25.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch W, Hunziker E, et al. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 1999;147:1109–22.PubMedPubMedCentralCrossRef Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch W, Hunziker E, et al. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 1999;147:1109–22.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.PubMedCrossRef Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.PubMedCrossRef
67.
Zurück zum Zitat Izawa Y, Gu Y-H, Osada T, Kanazawa M, Hawkins BT, Koziol JA, et al. β1-integrin–matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab. 2017;38(4):641–58.PubMedCrossRefPubMedCentral Izawa Y, Gu Y-H, Osada T, Kanazawa M, Hawkins BT, Koziol JA, et al. β1-integrin–matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab. 2017;38(4):641–58.PubMedCrossRefPubMedCentral
68.
Zurück zum Zitat Osada T, Gu Y-H, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell–matrix adhesion by β1-integrins. J Cereb Blood Flow Metab. 2011;31:1972–85.PubMedPubMedCentralCrossRef Osada T, Gu Y-H, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell–matrix adhesion by β1-integrins. J Cereb Blood Flow Metab. 2011;31:1972–85.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Sado Y, Kagawa M, Kishiro Y, Sugihara K, Naito I, Seyer JM, et al. Establishment by the rat lymph node method of epitope-defined monoclonal antibodies recognizing the six different alpha chains of human type IV collagen. Histochem Cell Biol. 1995;104:267–75.PubMedCrossRef Sado Y, Kagawa M, Kishiro Y, Sugihara K, Naito I, Seyer JM, et al. Establishment by the rat lymph node method of epitope-defined monoclonal antibodies recognizing the six different alpha chains of human type IV collagen. Histochem Cell Biol. 1995;104:267–75.PubMedCrossRef
70.
Zurück zum Zitat Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.PubMedCrossRef Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.PubMedCrossRef
71.
Zurück zum Zitat Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96.PubMedCrossRef Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96.PubMedCrossRef
72.
Zurück zum Zitat Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB, et al. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet. 2006;43:490–5.PubMedCrossRef Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB, et al. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet. 2006;43:490–5.PubMedCrossRef
73.
Zurück zum Zitat Vahedi K, Kubis N, Boukobza M, Arnoult M, Massin P, Tournier-Lasserve E, et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke. 2007;38:1461–4.PubMedCrossRef Vahedi K, Kubis N, Boukobza M, Arnoult M, Massin P, Tournier-Lasserve E, et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke. 2007;38:1461–4.PubMedCrossRef
74.
Zurück zum Zitat Lichtenbelt KD, Pistorius LR, De Tollenaer SM, Mancini GM, De Vries LS. Prenatal genetic confirmation of a COL4A1 mutation presenting with sonographic fetal intracranial hemorrhage. Ultrasound Obstet Gynecol. 2012;39:726–7.PubMedCrossRef Lichtenbelt KD, Pistorius LR, De Tollenaer SM, Mancini GM, De Vries LS. Prenatal genetic confirmation of a COL4A1 mutation presenting with sonographic fetal intracranial hemorrhage. Ultrasound Obstet Gynecol. 2012;39:726–7.PubMedCrossRef
75.
Zurück zum Zitat Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71:470–7.PubMedPubMedCentralCrossRef Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71:470–7.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90:91–101.PubMedPubMedCentralCrossRef Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90:91–101.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Verbeek E, Meuwissen ME, Verheijen FW, Govaert PP, Licht DJ, Kuo DS, et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet. 2012;20:844–51.PubMedPubMedCentralCrossRef Verbeek E, Meuwissen ME, Verheijen FW, Govaert PP, Licht DJ, Kuo DS, et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet. 2012;20:844–51.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Yoneda Y, Haginoya K, Arai H, Yamaoka S, Tsurusaki Y, Doi H, et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen alpha2 chain cause porencephaly. Am J Hum Genet. 2012;90:86–90.PubMedPubMedCentralCrossRef Yoneda Y, Haginoya K, Arai H, Yamaoka S, Tsurusaki Y, Doi H, et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen alpha2 chain cause porencephaly. Am J Hum Genet. 2012;90:86–90.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, et al. COL4A1 mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62:177–84.PubMedCrossRef Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, et al. COL4A1 mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62:177–84.PubMedCrossRef
80.
Zurück zum Zitat Vahedi K, Boukobza M, Massin P, Gould DB, Tournier-Lasserve E, Bousser MG. Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology. 2007;69:1564–8.PubMedCrossRef Vahedi K, Boukobza M, Massin P, Gould DB, Tournier-Lasserve E, Bousser MG. Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology. 2007;69:1564–8.PubMedCrossRef
81.
Zurück zum Zitat Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95.PubMedCrossRef Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95.PubMedCrossRef
82.
Zurück zum Zitat Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.PubMedPubMedCentralCrossRef Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Shah S, Kumar Y, McLean B, Churchill A, Stoodley N, Rankin J, et al. A dominantly inherited mutation in collagen IV A1 (COL4A1) causing childhood onset stroke without porencephaly. Eur J Paediatr Neurol. 2010;14:182–7.PubMedCrossRef Shah S, Kumar Y, McLean B, Churchill A, Stoodley N, Rankin J, et al. A dominantly inherited mutation in collagen IV A1 (COL4A1) causing childhood onset stroke without porencephaly. Eur J Paediatr Neurol. 2010;14:182–7.PubMedCrossRef
84.
Zurück zum Zitat Rouaud T, Labauge P, Tournier Lasserve E, Mine M, Coustans M, Deburghgraeve V, et al. Acute urinary retention due to a novel collagen COL4A1 mutation. Neurology. 2010;75:747–9.PubMedCrossRef Rouaud T, Labauge P, Tournier Lasserve E, Mine M, Coustans M, Deburghgraeve V, et al. Acute urinary retention due to a novel collagen COL4A1 mutation. Neurology. 2010;75:747–9.PubMedCrossRef
85.
Zurück zum Zitat Plaisier E, Chen Z, Gekeler F, Benhassine S, Dahan K, Marro B, et al. Novel COL4A1 mutations associated with HANAC syndrome: a role for the triple helical CB3[IV] domain. Am J Med Genet A. 2010;152A:2550–5.PubMedCrossRef Plaisier E, Chen Z, Gekeler F, Benhassine S, Dahan K, Marro B, et al. Novel COL4A1 mutations associated with HANAC syndrome: a role for the triple helical CB3[IV] domain. Am J Med Genet A. 2010;152A:2550–5.PubMedCrossRef
86.
Zurück zum Zitat Livingston J, Doherty D, Orcesi S, Tonduti D, Piechiecchio A, La Piana R, et al. COL4A1 mutations associated with a characteristic pattern of intracranial calcification. Neuropediatrics. 2011;42:227–33.PubMedCrossRef Livingston J, Doherty D, Orcesi S, Tonduti D, Piechiecchio A, La Piana R, et al. COL4A1 mutations associated with a characteristic pattern of intracranial calcification. Neuropediatrics. 2011;42:227–33.PubMedCrossRef
87.
Zurück zum Zitat Shah S, Ellard S, Kneen R, Lim M, Osborne N, Rankin J, et al. Childhood presentation of COL4A1 mutations. Dev Med Child Neurol. 2012;54:569–74.PubMedCrossRef Shah S, Ellard S, Kneen R, Lim M, Osborne N, Rankin J, et al. Childhood presentation of COL4A1 mutations. Dev Med Child Neurol. 2012;54:569–74.PubMedCrossRef
88.
Zurück zum Zitat McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem. 2017;292:762–70.PubMedCrossRef McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem. 2017;292:762–70.PubMedCrossRef
89.
Zurück zum Zitat Joutel A, Haddad I, Ratelade J, Nelson MT. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab. 2016;36:143–57.PubMedPubMedCentralCrossRef Joutel A, Haddad I, Ratelade J, Nelson MT. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab. 2016;36:143–57.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Szklarczyk A, Stins M, Milward E, Ryu H, Fitzsimmons C, Sullivan D, et al. Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol. 2007;13:2–10.PubMedCrossRef Szklarczyk A, Stins M, Milward E, Ryu H, Fitzsimmons C, Sullivan D, et al. Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol. 2007;13:2–10.PubMedCrossRef
91.
Zurück zum Zitat Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity? Fluids Barriers CNS. 2014;11:1.PubMedPubMedCentralCrossRef Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity? Fluids Barriers CNS. 2014;11:1.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Rosenberg G, Estrada E, Dencoff J. Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke. 1998;29:2189–95.PubMedCrossRef Rosenberg G, Estrada E, Dencoff J. Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke. 1998;29:2189–95.PubMedCrossRef
94.
Zurück zum Zitat Zozulya A, Weidenfeller C, Galla H-J. Pericyte–endothelial cell interaction increases MMP-9 secretion at the blood–brain barrier in vitro. Brain Res. 2008;1189:1–11.PubMedCrossRef Zozulya A, Weidenfeller C, Galla H-J. Pericyte–endothelial cell interaction increases MMP-9 secretion at the blood–brain barrier in vitro. Brain Res. 2008;1189:1–11.PubMedCrossRef
95.
Zurück zum Zitat Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.PubMedCrossRef Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.PubMedCrossRef
96.
Zurück zum Zitat Nyúl-Tóth Á, Suciu M, Molnár J, Fazakas C, Haskó J, Herman H, et al. Differences in the molecular structure of the blood–brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. Am J Physiol Heart Circ Physiol. 2016;310:H1702–14.PubMedCrossRef Nyúl-Tóth Á, Suciu M, Molnár J, Fazakas C, Haskó J, Herman H, et al. Differences in the molecular structure of the blood–brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. Am J Physiol Heart Circ Physiol. 2016;310:H1702–14.PubMedCrossRef
97.
Zurück zum Zitat Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76.PubMedCrossRef Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76.PubMedCrossRef
98.
Zurück zum Zitat Zhang K, Sejnowski TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA. 2000;97:5621–6.PubMedPubMedCentralCrossRef Zhang K, Sejnowski TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA. 2000;97:5621–6.PubMedPubMedCentralCrossRef
99.
100.
Zurück zum Zitat Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, et al. Regional P-glycoprotein activity and inhibition at the human blood–brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther. 2010;87:579–85.PubMedCrossRef Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, et al. Regional P-glycoprotein activity and inhibition at the human blood–brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther. 2010;87:579–85.PubMedCrossRef
101.
Zurück zum Zitat de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, et al. Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab. 2001;21:483–92.PubMedCrossRef de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, et al. Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab. 2001;21:483–92.PubMedCrossRef
102.
Zurück zum Zitat Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 2001;910:81–93.PubMedCrossRef Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 2001;910:81–93.PubMedCrossRef
103.
Zurück zum Zitat El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, et al. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, et al. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef
104.
Zurück zum Zitat Hanske S, Dyrna F, Bechmann I, Krueger M. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed. Brain Struct Funct. 2017;222:1179–92.PubMedCrossRef Hanske S, Dyrna F, Bechmann I, Krueger M. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed. Brain Struct Funct. 2017;222:1179–92.PubMedCrossRef
105.
Zurück zum Zitat Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood–brain barrier gene expression along the cerebral microvasculature. J Neurosci Res. 2010;88:1457–74.PubMed Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood–brain barrier gene expression along the cerebral microvasculature. J Neurosci Res. 2010;88:1457–74.PubMed
106.
Zurück zum Zitat Allt G, Lawrenson JG. Is the pial microvessel a good model for blood–brain barrier studies? Brain Res Brain Res Rev. 1997;24:67–76.PubMedCrossRef Allt G, Lawrenson JG. Is the pial microvessel a good model for blood–brain barrier studies? Brain Res Brain Res Rev. 1997;24:67–76.PubMedCrossRef
107.
Zurück zum Zitat Lawrenson JG, Reid AR, Finn TM, Orte C, Allt G. Cerebral and pial microvessels: differential expression of gamma-glutamyl transpeptidase and alkaline phosphatase. Anat Embryol. 1999;199:29–34.CrossRef Lawrenson JG, Reid AR, Finn TM, Orte C, Allt G. Cerebral and pial microvessels: differential expression of gamma-glutamyl transpeptidase and alkaline phosphatase. Anat Embryol. 1999;199:29–34.CrossRef
109.
Zurück zum Zitat Lund H, Krakauer M, Skimminge A, Sellebjerg F, Garde E, Siebner HR, et al. blood–brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis. PLoS ONE. 2013;8:e56375.PubMedPubMedCentralCrossRef Lund H, Krakauer M, Skimminge A, Sellebjerg F, Garde E, Siebner HR, et al. blood–brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis. PLoS ONE. 2013;8:e56375.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4+T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA. 2003;100:8389–94.PubMedPubMedCentralCrossRef Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4+T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA. 2003;100:8389–94.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Kent SJ, Karlik SJ, Cannon C, Hines DK, Yednock TA, Fritz LC, et al. A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol. 1995;58:1–10.PubMedCrossRef Kent SJ, Karlik SJ, Cannon C, Hines DK, Yednock TA, Fritz LC, et al. A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol. 1995;58:1–10.PubMedCrossRef
112.
Zurück zum Zitat Theien BE, Vanderlugt CL, Eagar TN, Nickerson-Nutter C, Nazareno R, Kuchroo VK, et al. Discordant effects of anti-VLA-4 treatment before and after onset of relapsing experimental autoimmune encephalomyelitis. J Clin Invest. 2001;107:995–1006.PubMedPubMedCentralCrossRef Theien BE, Vanderlugt CL, Eagar TN, Nickerson-Nutter C, Nazareno R, Kuchroo VK, et al. Discordant effects of anti-VLA-4 treatment before and after onset of relapsing experimental autoimmune encephalomyelitis. J Clin Invest. 2001;107:995–1006.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Tubridy N, Behan P, Capildeo R, Chaudhuri A, Forbes R, Hawkins C, et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. Neurology. 1999;53:466.PubMedCrossRef Tubridy N, Behan P, Capildeo R, Chaudhuri A, Forbes R, Hawkins C, et al. The effect of anti-α4 integrin antibody on brain lesion activity in MS. Neurology. 1999;53:466.PubMedCrossRef
114.
Zurück zum Zitat Welsh CT, Rose JW, Hill KE, Townsend JJ. Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1α. J Neuroimmunol. 1993;43:161–7.PubMedCrossRef Welsh CT, Rose JW, Hill KE, Townsend JJ. Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1α. J Neuroimmunol. 1993;43:161–7.PubMedCrossRef
115.
Zurück zum Zitat Holley JE, Newcombe J, Whatmore JL, Gutowski NJ. Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett. 2010;470:65–70.PubMedCrossRef Holley JE, Newcombe J, Whatmore JL, Gutowski NJ. Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett. 2010;470:65–70.PubMedCrossRef
116.
Zurück zum Zitat van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L. The blood–brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. 2007;66:321–8.PubMedCrossRef van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L. The blood–brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. 2007;66:321–8.PubMedCrossRef
117.
Zurück zum Zitat Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam A-M. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci. 2015;1351:99–113.PubMedCrossRef Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam A-M. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci. 2015;1351:99–113.PubMedCrossRef
118.
Zurück zum Zitat Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M. Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci. 2012;48:66–76.PubMedPubMedCentralCrossRef Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M. Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci. 2012;48:66–76.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, et al. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009;1283:127–38.PubMedCrossRef Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, et al. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009;1283:127–38.PubMedCrossRef
120.
Zurück zum Zitat Janssen K, Rickert M, Clarner T, Beyer C, Kipp M. Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood–brain barrier. Mol Neurobiol. 2016;53:1551–64.PubMedCrossRef Janssen K, Rickert M, Clarner T, Beyer C, Kipp M. Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood–brain barrier. Mol Neurobiol. 2016;53:1551–64.PubMedCrossRef
121.
Zurück zum Zitat Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White matter alterations in early stages of schizophrenia: a systematic review of diffusion tensor imaging studies. J Neuroimaging. 2014;24:101–10.PubMedCrossRef Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White matter alterations in early stages of schizophrenia: a systematic review of diffusion tensor imaging studies. J Neuroimaging. 2014;24:101–10.PubMedCrossRef
122.
Zurück zum Zitat Downhill JE, Buchsbaum MS, Wei T, Spiegel-Cohen J, Hazlett EA, Haznedar MM, et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res. 2000;42:193–208.PubMedCrossRef Downhill JE, Buchsbaum MS, Wei T, Spiegel-Cohen J, Hazlett EA, Haznedar MM, et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res. 2000;42:193–208.PubMedCrossRef
123.
Zurück zum Zitat Bachmann S, Pantel J, Flender A, Bottmer C, Essig M, Schröder J. Corpus callosum in first-episode patients with schizophrenia–A magnetic resonance imaging study. Psychol Med. 2003;33:1019–27.PubMedCrossRef Bachmann S, Pantel J, Flender A, Bottmer C, Essig M, Schröder J. Corpus callosum in first-episode patients with schizophrenia–A magnetic resonance imaging study. Psychol Med. 2003;33:1019–27.PubMedCrossRef
124.
Zurück zum Zitat Reis Marques T, Taylor H, Chaddock C, Dell’Acqua F, Handley R, Reinders AS, et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2013;137:172–82.PubMedPubMedCentralCrossRef Reis Marques T, Taylor H, Chaddock C, Dell’Acqua F, Handley R, Reinders AS, et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2013;137:172–82.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60:443–56.PubMedCrossRef Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60:443–56.PubMedCrossRef
126.
Zurück zum Zitat Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39:376–85.PubMedPubMedCentralCrossRef Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39:376–85.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Rao JS, Kim H-W, Harry GJ, Rapoport SI, Reese EA. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res. 2013;147:24–31.PubMedCrossRef Rao JS, Kim H-W, Harry GJ, Rapoport SI, Reese EA. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res. 2013;147:24–31.PubMedCrossRef
128.
Zurück zum Zitat Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.PubMedCrossRef Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.PubMedCrossRef
129.
Zurück zum Zitat Fillman S, Cloonan N, Catts V, Miller L, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.PubMedCrossRef Fillman S, Cloonan N, Catts V, Miller L, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.PubMedCrossRef
130.
Zurück zum Zitat Pasternak O, Westin C-F, Bouix S, Seidman LJ, Goldstein JM, Woo T-UW, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci. 2012;32:17365–72.PubMedPubMedCentralCrossRef Pasternak O, Westin C-F, Bouix S, Seidman LJ, Goldstein JM, Woo T-UW, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci. 2012;32:17365–72.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Milleit B, Smesny S, Rothermundt M, Preul C, Schroeter ML, von Eiff C, et al. Serum S100B protein is specifically related to white matter changes in schizophrenia. Front Cell Neurosci. 2016;10:33.PubMedPubMedCentralCrossRef Milleit B, Smesny S, Rothermundt M, Preul C, Schroeter ML, von Eiff C, et al. Serum S100B protein is specifically related to white matter changes in schizophrenia. Front Cell Neurosci. 2016;10:33.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, et al. Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155:1599–611.PubMedPubMedCentralCrossRef Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, et al. Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155:1599–611.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Stins MF, Pearce D, Di Cello F, Erdreich-Epstein A, Pardo CA, Kim KS. Induction of intercellular adhesion molecule-1 on human brain endothelial cells by HIV-1 gp120: role of CD4 and chemokine coreceptors. Lab Invest. 2003;83:1787–98.PubMedCrossRef Stins MF, Pearce D, Di Cello F, Erdreich-Epstein A, Pardo CA, Kim KS. Induction of intercellular adhesion molecule-1 on human brain endothelial cells by HIV-1 gp120: role of CD4 and chemokine coreceptors. Lab Invest. 2003;83:1787–98.PubMedCrossRef
135.
Zurück zum Zitat Navia BA, Cho ES, Petito CK, Price RW. The AIDS dementia complex: II. Neuropathology. Ann Neurol. 1986;19:525–35.PubMedCrossRef Navia BA, Cho ES, Petito CK, Price RW. The AIDS dementia complex: II. Neuropathology. Ann Neurol. 1986;19:525–35.PubMedCrossRef
136.
Zurück zum Zitat Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, et al. Neocortical damage during HIV infection. Ann Neurol. 1991;29:651–7.PubMedCrossRef Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, et al. Neocortical damage during HIV infection. Ann Neurol. 1991;29:651–7.PubMedCrossRef
137.
Zurück zum Zitat Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155:1915–27.PubMedPubMedCentralCrossRef Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155:1915–27.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Medana IM, Turner GD. Human cerebral malaria and the blood–brain barrier. Int J Parasitol. 2006;36:555–68.PubMedCrossRef Medana IM, Turner GD. Human cerebral malaria and the blood–brain barrier. Int J Parasitol. 2006;36:555–68.PubMedCrossRef
139.
Zurück zum Zitat Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood–brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.PubMedCrossRef Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood–brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.PubMedCrossRef
140.
Zurück zum Zitat Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral
141.
Zurück zum Zitat Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, et al. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis. 2012;205:663–71.PubMedCrossRef Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, et al. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis. 2012;205:663–71.PubMedCrossRef
142.
Zurück zum Zitat Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36:569–82.PubMedCrossRef Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36:569–82.PubMedCrossRef
143.
Zurück zum Zitat Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al. Blood–brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg. 2001;64:207–13.PubMedCrossRef Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al. Blood–brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg. 2001;64:207–13.PubMedCrossRef
144.
Zurück zum Zitat Moxon CA, Wassmer SC, Milner DA, Chisala NV, Taylor TE, Seydel KB, et al. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood. 2013;122:842–51.PubMedPubMedCentralCrossRef Moxon CA, Wassmer SC, Milner DA, Chisala NV, Taylor TE, Seydel KB, et al. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood. 2013;122:842–51.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985;119:385–401.PubMedPubMedCentral MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985;119:385–401.PubMedPubMedCentral
146.
Zurück zum Zitat Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al. The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol. 2011;178:2146–58.PubMedPubMedCentralCrossRef Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al. The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol. 2011;178:2146–58.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med. 2004;10:143–5.PubMedCrossRef Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med. 2004;10:143–5.PubMedCrossRef
148.
Zurück zum Zitat Ge S, Song L, Pachter JS. Where is the blood–brain barrier… really? J Neurosci Res. 2005;79:421–7.PubMedCrossRef Ge S, Song L, Pachter JS. Where is the blood–brain barrier… really? J Neurosci Res. 2005;79:421–7.PubMedCrossRef
149.
Zurück zum Zitat Tunkel AR, Rosser SW, Hansen EJ, Scheld WM. Blood–brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol. 1991;27:113–20.CrossRef Tunkel AR, Rosser SW, Hansen EJ, Scheld WM. Blood–brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol. 1991;27:113–20.CrossRef
150.
Zurück zum Zitat Audus KL, Borchardt RT. Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J Neurochem. 1986;47:484–8.PubMedCrossRef Audus KL, Borchardt RT. Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J Neurochem. 1986;47:484–8.PubMedCrossRef
151.
Zurück zum Zitat Duport S, Robert F, Muller D, Grau G, Parisi L, Stoppini L. An in vitro blood–brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci USA. 1998;95:1840–5.PubMedPubMedCentralCrossRef Duport S, Robert F, Muller D, Grau G, Parisi L, Stoppini L. An in vitro blood–brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci USA. 1998;95:1840–5.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Mukhtar M, Pomerantz RJ. Development of an in vitro blood–brain barrier model to study molecular neuropathogenesis and neurovirologic disorders induced by human immunodeficiency virus type 1 infection. J Hum Virol. 2000;3:324–34.PubMed Mukhtar M, Pomerantz RJ. Development of an in vitro blood–brain barrier model to study molecular neuropathogenesis and neurovirologic disorders induced by human immunodeficiency virus type 1 infection. J Hum Virol. 2000;3:324–34.PubMed
153.
Zurück zum Zitat Stins MF, Prasadarao NV, Zhou J, Arditi M, Kim KS. Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease. In Vitro Cell Dev Biol Anim. 1997;33:243–7.PubMedCrossRef Stins MF, Prasadarao NV, Zhou J, Arditi M, Kim KS. Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease. In Vitro Cell Dev Biol Anim. 1997;33:243–7.PubMedCrossRef
154.
Zurück zum Zitat Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36:862–90.PubMedPubMedCentralCrossRef Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36:862–90.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Kusch-Poddar M, Drewe J, Fux I, Gutmann H. Evaluation of the immortalized human brain capillary endothelial cell line BB19 as a human cell culture model for the blood–brain barrier. Brain Res. 2005;1064:21–31.PubMedCrossRef Kusch-Poddar M, Drewe J, Fux I, Gutmann H. Evaluation of the immortalized human brain capillary endothelial cell line BB19 as a human cell culture model for the blood–brain barrier. Brain Res. 2005;1064:21–31.PubMedCrossRef
156.
Zurück zum Zitat Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33.PubMedPubMedCentralCrossRef Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, et al. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS ONE. 2013;8:e70233.PubMedPubMedCentralCrossRef Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, et al. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS ONE. 2013;8:e70233.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Weksler B, Subileau E, Perriere N, Charneau P, Holloway K, Leveque M, et al. blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.PubMedCrossRef Weksler B, Subileau E, Perriere N, Charneau P, Holloway K, Leveque M, et al. blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.PubMedCrossRef
159.
160.
Zurück zum Zitat Katt ME, Xu ZS, Gerecht S, Searson PC. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood–brain barrier phenotype. PLoS ONE. 2016;11:e0152105.PubMedPubMedCentralCrossRef Katt ME, Xu ZS, Gerecht S, Searson PC. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood–brain barrier phenotype. PLoS ONE. 2016;11:e0152105.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.PubMedPubMedCentralCrossRef Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Human blood–brain barrier endothelial cells derived from pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.PubMedPubMedCentralCrossRef Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Human blood–brain barrier endothelial cells derived from pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Page S, Munsell A, Al-Ahmad AJ. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS. 2016;13:16.PubMedPubMedCentralCrossRef Page S, Munsell A, Al-Ahmad AJ. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS. 2016;13:16.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Yamamizu K, Iwasaki M, Takakubo H, Sakamoto T, Ikuno T, Miyoshi M, et al. In vitro modeling of blood–brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Rep. 2017;8:634–47.CrossRef Yamamizu K, Iwasaki M, Takakubo H, Sakamoto T, Ikuno T, Miyoshi M, et al. In vitro modeling of blood–brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Rep. 2017;8:634–47.CrossRef
165.
Zurück zum Zitat Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD, Svendsen CN, et al. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140:874–88.PubMedPubMedCentralCrossRef Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD, Svendsen CN, et al. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140:874–88.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.PubMedPubMedCentralCrossRef Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14:20.PubMedPubMedCentralCrossRef DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14:20.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983;14:396–402.PubMedCrossRef Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983;14:396–402.PubMedCrossRef
169.
Zurück zum Zitat Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, et al. In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:165–78.PubMedCrossRef Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, et al. In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:165–78.PubMedCrossRef
170.
Zurück zum Zitat Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, et al. Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci. 2001;12:215–22.PubMedCrossRef Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, et al. Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci. 2001;12:215–22.PubMedCrossRef
171.
Zurück zum Zitat Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in vivo and in vitro blood–brain barrier tightness. Brain Res. 2009;1284:12–21.PubMedCrossRef Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in vivo and in vitro blood–brain barrier tightness. Brain Res. 2009;1284:12–21.PubMedCrossRef
172.
Zurück zum Zitat Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM. An improved in vitro blood–brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012;814:415–30.PubMedCrossRef Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM. An improved in vitro blood–brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012;814:415–30.PubMedCrossRef
173.
Zurück zum Zitat Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, et al. Induction of blood–brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia. 2005;51:187–98.PubMedCrossRef Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, et al. Induction of blood–brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia. 2005;51:187–98.PubMedCrossRef
174.
Zurück zum Zitat Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, et al. An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008;22:799–811.PubMedCrossRef Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, et al. An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008;22:799–811.PubMedCrossRef
175.
Zurück zum Zitat Perriere N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 2007;1150:1–13.PubMedCrossRef Perriere N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 2007;1150:1–13.PubMedCrossRef
176.
Zurück zum Zitat Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005;1038:208–15.PubMedCrossRef Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005;1038:208–15.PubMedCrossRef
177.
Zurück zum Zitat Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept. 2004;123:77–83.PubMedCrossRef Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept. 2004;123:77–83.PubMedCrossRef
178.
Zurück zum Zitat Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, et al. Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011;8:258–69.PubMedCrossRef Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, et al. Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011;8:258–69.PubMedCrossRef
179.
Zurück zum Zitat Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood–brain barrier. Acta Neurobiol Exp. 2011;71:113–28. Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood–brain barrier. Acta Neurobiol Exp. 2011;71:113–28.
180.
Zurück zum Zitat Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation transwell models. J Neurosci Methods. 2011;199:223–9.PubMedCrossRef Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation transwell models. J Neurosci Methods. 2011;199:223–9.PubMedCrossRef
181.
Zurück zum Zitat Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood–brain barrier and blood–spinal cord barrier. BMC Neurosci. 2013;14:59.PubMedPubMedCentralCrossRef Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood–brain barrier and blood–spinal cord barrier. BMC Neurosci. 2013;14:59.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood–brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010;12:759–70.PubMedPubMedCentralCrossRef Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood–brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010;12:759–70.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Colgan OC, Collins NT, Ferguson G, Murphy RP, Birney YA, Cahill PA, et al. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res. 2008;1193:84–92.PubMedCrossRef Colgan OC, Collins NT, Ferguson G, Murphy RP, Birney YA, Cahill PA, et al. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res. 2008;1193:84–92.PubMedCrossRef
184.
Zurück zum Zitat András IE, Toborek M. Extracellular vesicles of the blood–brain barrier. Tissue Barriers. 2016;4:e1131804.PubMedCrossRef András IE, Toborek M. Extracellular vesicles of the blood–brain barrier. Tissue Barriers. 2016;4:e1131804.PubMedCrossRef
185.
Zurück zum Zitat Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.PubMedCrossRef Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.PubMedCrossRef
186.
Zurück zum Zitat Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.PubMedCrossRef Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.PubMedCrossRef
187.
Zurück zum Zitat Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain Barrier endothelial physiology. BMC Neurosci. 2011;12:40.PubMedPubMedCentralCrossRef Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain Barrier endothelial physiology. BMC Neurosci. 2011;12:40.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM. An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165–72.PubMedPubMedCentralCrossRef Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM. An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165–72.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Colgan OC, Ferguson G, Collins NT, Murphy RP, Meade G, Cahill PA, et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am J Physiol Heart Circ Physiol. 2007;292:H3190–7.PubMedCrossRef Colgan OC, Ferguson G, Collins NT, Murphy RP, Meade G, Cahill PA, et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am J Physiol Heart Circ Physiol. 2007;292:H3190–7.PubMedCrossRef
190.
Zurück zum Zitat Partyka PP, Godsey GA, Galie JR, Kosciuk MC, Acharya NK, Nagele RG, et al. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials. 2017;115:30–9.PubMedCrossRef Partyka PP, Godsey GA, Galie JR, Kosciuk MC, Acharya NK, Nagele RG, et al. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials. 2017;115:30–9.PubMedCrossRef
191.
Zurück zum Zitat Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O’Brien CC, Roquer J, et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017;37:2614–25.PubMedCrossRef Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O’Brien CC, Roquer J, et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017;37:2614–25.PubMedCrossRef
192.
Zurück zum Zitat Krizanac-Bengez L, Mayberg MR, Cunningham E, Hossain M, Ponnampalam S, Parkinson FE, et al. Loss of shear stress induces leukocyte-mediated cytokine release and blood–brain barrier failure in dynamic in vitro blood–brain barrier model. J Cell Physiol. 2006;206:68–77.PubMedCrossRef Krizanac-Bengez L, Mayberg MR, Cunningham E, Hossain M, Ponnampalam S, Parkinson FE, et al. Loss of shear stress induces leukocyte-mediated cytokine release and blood–brain barrier failure in dynamic in vitro blood–brain barrier model. J Cell Physiol. 2006;206:68–77.PubMedCrossRef
193.
Zurück zum Zitat Galie PA, van Oosten A, Chen CS, Janmey PA. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip. 2015;15:1205–12.PubMedPubMedCentralCrossRef Galie PA, van Oosten A, Chen CS, Janmey PA. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip. 2015;15:1205–12.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Stroka KM, Aranda-Espinoza H. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood. 2011;118:1632–40.PubMedPubMedCentralCrossRef Stroka KM, Aranda-Espinoza H. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood. 2011;118:1632–40.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, et al. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J. 2015;108:471–8.PubMedPubMedCentralCrossRef Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, et al. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J. 2015;108:471–8.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Okech W, Abberton KM, Kuebel JM, Hocking DC, Sarelius IH. Extracellular matrix fibronectin mediates an endothelial cell response to shear stress via the heparin-binding, matricryptic RWRPK sequence of FNIII1H. Am J Physiol Heart Circ Physiol. 2016;311:H1071.CrossRef Okech W, Abberton KM, Kuebel JM, Hocking DC, Sarelius IH. Extracellular matrix fibronectin mediates an endothelial cell response to shear stress via the heparin-binding, matricryptic RWRPK sequence of FNIII1H. Am J Physiol Heart Circ Physiol. 2016;311:H1071.CrossRef
197.
Zurück zum Zitat Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol. 2005;169:191–202.PubMedPubMedCentralCrossRef Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol. 2005;169:191–202.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Ye M, Sanchez HM, Hultz M, Yang Z, Bogorad M, Wong AD, et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep. 2014;4:4681.PubMedPubMedCentralCrossRef Ye M, Sanchez HM, Hultz M, Yang Z, Bogorad M, Wong AD, et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep. 2014;4:4681.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Bramley JC, Drummond CG, Lennemann NJ, Good CA, Kim KS, Coyne CB. A three-dimensional cell culture system to model RNA virus infections at the blood–brain barrier. mSphere. 2017;2:e00206–17.PubMedPubMedCentralCrossRef Bramley JC, Drummond CG, Lennemann NJ, Good CA, Kim KS, Coyne CB. A three-dimensional cell culture system to model RNA virus infections at the blood–brain barrier. mSphere. 2017;2:e00206–17.PubMedPubMedCentralCrossRef
200.
201.
Zurück zum Zitat Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9:054124.PubMedPubMedCentralCrossRef Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9:054124.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Herland A, van der Meer A, FitzGerald EA, Park T-E, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLOS ONE. 2016;11:e0150360.PubMedPubMedCentralCrossRef Herland A, van der Meer A, FitzGerald EA, Park T-E, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLOS ONE. 2016;11:e0150360.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed Microdevices. 2013;15:145–50.PubMedCrossRef Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed Microdevices. 2013;15:145–50.PubMedCrossRef
204.
Zurück zum Zitat Walter FR, Valkai S, Kincses A, Petneházi A, Czeller T, Veszelka S, et al. A versatile lab-on-a-chip tool for modeling biological barriers. Sens Actuators B. 2016;222:1209–19.CrossRef Walter FR, Valkai S, Kincses A, Petneházi A, Czeller T, Veszelka S, et al. A versatile lab-on-a-chip tool for modeling biological barriers. Sens Actuators B. 2016;222:1209–19.CrossRef
205.
Zurück zum Zitat Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, et al. Three-dimensional blood–brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 2015;5:15222.PubMedPubMedCentralCrossRef Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, et al. Three-dimensional blood–brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 2015;5:15222.PubMedPubMedCentralCrossRef
Metadaten
Titel
Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood–brain barrier models
verfasst von
Midrelle E. Noumbissi
Bianca Galasso
Monique F. Stins
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Fluids and Barriers of the CNS / Ausgabe 1/2018
Elektronische ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-018-0097-2

Weitere Artikel der Ausgabe 1/2018

Fluids and Barriers of the CNS 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Stuhltransfusion könnte Fortschreiten von Parkinson-Symptomen bremsen

03.05.2024 Parkinson-Krankheit Nachrichten

Kann eine frühzeitige Stuhltransplantation das Fortschreiten von Parkinson-Symptomen verlangsamen? Die Ergebnisse einer randomisierten Phase-2-Studie scheinen dafür zu sprechen.

Frühe Tranexamsäure-Therapie nützt wenig bei Hirnblutungen

02.05.2024 Hirnblutung Nachrichten

Erhalten Personen mit einer spontanen Hirnblutung innerhalb von zwei Stunden nach Symptombeginn eine Tranexamsäure-Therapie, kann dies weder die Hämatomexpansion eindämmen noch die Mortalität senken.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.