Skip to main content
Erschienen in: Cancer Microenvironment 2/2012

01.08.2012 | Review Paper

Significance of Heparanase in Cancer and Inflammation

verfasst von: Israel Vlodavsky, Phillip Beckhove, Immanuel Lerner, Claudio Pisano, Amichai Meirovitz, Neta Ilan, Michael Elkin

Erschienen in: Cancer Microenvironment | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Heparan sulfate proteoglycans (HSPGs) are primary components at the interface between virtually every eukaryotic cell and its extracellular matrix. HSPGs not only provide a storage depot for heparin-binding molecules in the cell microenvironment, but also decisively regulate their accessibility, function and mode of action. As such, they are intimately involved in modulating cell invasion and signaling loops that are critical for tumor growth, inflammation and kidney function. In a series of studies performed since the cloning of the human heparanase gene, we and others have demonstrated that heparanase, the sole heparan sulfate degrading endoglycosidase, is causally involved in cancer progression, inflammation and diabetic nephropathy and hence is a valid target for drug development. Heparanase is causally involved in inflammation and accelerates colon tumorigenesis associated with inflammatory bowel disease. Notably, heparanase stimulates macrophage activation, while macrophages induce production and activation of latent heparanase contributed by the colon epithelium, together generating a vicious cycle that powers colitis and the associated tumorigenesis. Heparanase also plays a decisive role in the pathogenesis of diabetic nephropathy, degrading heparan sulfate in the glomerular basement membrane and ultimately leading to proteinuria and kidney dysfunction. Notably, clinically relevant doses of ionizing radiation (IR) upregulate heparanase expression and thereby augment the metastatic potential of pancreatic carcinoma. Thus, combining radiotherapy with heparanase inhibition is an effective strategy to prevent tumor resistance and dissemination in IR-treated pancreatic cancer patients. Also, accumulating evidence indicate that peptides derived from human heparanase elicit a potent anti-tumor immune response, suggesting that heparanase represents a promising target antigen for immunotherapeutic approaches against a broad variety of tumours. Oligosaccharide-based compounds that inhibit heparanase enzymatic activity were developed, aiming primarily at halting tumor growth, metastasis and angiogenesis. Some of these compounds are being evaluated in clinical trials, targeting both the tumor and tumor microenvironment.
Literatur
1.
Zurück zum Zitat Vlodavsky I, Gospodarowicz D (1981) Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289:304–306PubMedCrossRef Vlodavsky I, Gospodarowicz D (1981) Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289:304–306PubMedCrossRef
2.
Zurück zum Zitat Vlodavsky I, Lui GM, Gospodarowicz D (1980) Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19:607–616PubMedCrossRef Vlodavsky I, Lui GM, Gospodarowicz D (1980) Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19:607–616PubMedCrossRef
3.
Zurück zum Zitat Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. Chapter 10:Unit 10.4 Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. Chapter 10:Unit 10.4
4.
Zurück zum Zitat Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386PubMedCrossRef Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386PubMedCrossRef
5.
Zurück zum Zitat Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176PubMedCrossRef Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176PubMedCrossRef
6.
Zurück zum Zitat Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130:393–400PubMed Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130:393–400PubMed
7.
Zurück zum Zitat Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923PubMedCrossRef Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923PubMedCrossRef
8.
Zurück zum Zitat Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355PubMed Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355PubMed
9.
Zurück zum Zitat Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475PubMedCrossRef Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475PubMedCrossRef
10.
Zurück zum Zitat Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef
11.
Zurück zum Zitat Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412PubMedCrossRef Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412PubMedCrossRef
12.
Zurück zum Zitat Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159PubMedCrossRef Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159PubMedCrossRef
13.
Zurück zum Zitat Ogren S, Lindahl U (1975) Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 250:2690–2697PubMed Ogren S, Lindahl U (1975) Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 250:2690–2697PubMed
14.
Zurück zum Zitat Thunberg L, Backstrom G, Wasteson A, Robinson HC, Ogren S, Lindahl U (1982) Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem 257:10278–10282PubMed Thunberg L, Backstrom G, Wasteson A, Robinson HC, Ogren S, Lindahl U (1982) Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem 257:10278–10282PubMed
15.
Zurück zum Zitat Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108PubMed Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108PubMed
16.
Zurück zum Zitat Lerner I, Hermano E, Zcharia E et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721PubMedCrossRef Lerner I, Hermano E, Zcharia E et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721PubMedCrossRef
17.
Zurück zum Zitat Li RW, Freeman C, Yu D et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600PubMedCrossRef Li RW, Freeman C, Yu D et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600PubMedCrossRef
18.
Zurück zum Zitat van den Hoven MJ, Rops AL, Bakker MA et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70:2100–2108PubMed van den Hoven MJ, Rops AL, Bakker MA et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70:2100–2108PubMed
19.
Zurück zum Zitat Lindahl U (1990) Biosynthesis of heparin. Biochem Soc Trans 18:803–805PubMed Lindahl U (1990) Biosynthesis of heparin. Biochem Soc Trans 18:803–805PubMed
20.
Zurück zum Zitat Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327PubMedCrossRef Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327PubMedCrossRef
21.
Zurück zum Zitat Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRef Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRef
22.
Zurück zum Zitat Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818PubMed Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818PubMed
23.
Zurück zum Zitat Lindahl U (2007) Heparan sulfate-protein interactions–a concept for drug design? Thromb Haemost 98:109–115PubMed Lindahl U (2007) Heparan sulfate-protein interactions–a concept for drug design? Thromb Haemost 98:109–115PubMed
24.
Zurück zum Zitat Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024PubMedCrossRef Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024PubMedCrossRef
25.
Zurück zum Zitat Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371PubMed Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371PubMed
26.
Zurück zum Zitat Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRef Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRef
27.
Zurück zum Zitat Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484PubMedCrossRef Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484PubMedCrossRef
28.
Zurück zum Zitat Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528PubMedCrossRef Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528PubMedCrossRef
29.
30.
Zurück zum Zitat Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132PubMedCrossRef Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132PubMedCrossRef
31.
Zurück zum Zitat Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. NatRev Mol Cell Biol 6:530–541CrossRef Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. NatRev Mol Cell Biol 6:530–541CrossRef
32.
Zurück zum Zitat Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Devel Biol 12:89–98CrossRef Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Devel Biol 12:89–98CrossRef
33.
Zurück zum Zitat Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186PubMedCrossRef Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186PubMedCrossRef
34.
Zurück zum Zitat Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151PubMedCrossRef Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151PubMedCrossRef
35.
Zurück zum Zitat Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMedCrossRef Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMedCrossRef
36.
Zurück zum Zitat Patel VN, Knox SM, Likar KM et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186PubMedCrossRef Patel VN, Knox SM, Likar KM et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186PubMedCrossRef
37.
Zurück zum Zitat Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271PubMedCrossRef Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271PubMedCrossRef
38.
Zurück zum Zitat Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMedCrossRef Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMedCrossRef
39.
Zurück zum Zitat Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277:3890–3903PubMedCrossRef Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277:3890–3903PubMedCrossRef
40.
Zurück zum Zitat Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039PubMedCrossRef Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039PubMedCrossRef
41.
Zurück zum Zitat Levy-Adam F, Feld S, Cohen-Kaplan V et al (2010) Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 285:28010–28019PubMedCrossRef Levy-Adam F, Feld S, Cohen-Kaplan V et al (2010) Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 285:28010–28019PubMedCrossRef
42.
Zurück zum Zitat McKenzie E, Tyson K, Stamps A et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177PubMedCrossRef McKenzie E, Tyson K, Stamps A et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177PubMedCrossRef
43.
Zurück zum Zitat Vlodavsky I, Eldor A, Haimovitz-Friedman A et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed Vlodavsky I, Eldor A, Haimovitz-Friedman A et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed
44.
Zurück zum Zitat Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15:1661–1663PubMed Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15:1661–1663PubMed
45.
Zurück zum Zitat Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891PubMedCrossRef Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891PubMedCrossRef
46.
Zurück zum Zitat McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435PubMedCrossRef McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435PubMedCrossRef
47.
Zurück zum Zitat Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, Steinkuhler C (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873PubMedCrossRef Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, Steinkuhler C (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873PubMedCrossRef
48.
Zurück zum Zitat Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519PubMedCrossRef Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519PubMedCrossRef
49.
Zurück zum Zitat Hulett MD, Hornby JR, Ohms SJ et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667PubMedCrossRef Hulett MD, Hornby JR, Ohms SJ et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667PubMedCrossRef
50.
Zurück zum Zitat Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575PubMedCrossRef Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575PubMedCrossRef
51.
Zurück zum Zitat Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176PubMedCrossRef Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176PubMedCrossRef
52.
Zurück zum Zitat Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasion and metastatic properties of Mouse B 16 Melanoma sublines. Science 220:611–613PubMedCrossRef Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasion and metastatic properties of Mouse B 16 Melanoma sublines. Science 220:611–613PubMedCrossRef
53.
Zurück zum Zitat Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cells mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relation to tumor cell metastasis. Cancer Res 43:2704–2711PubMed Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cells mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relation to tumor cell metastasis. Cancer Res 43:2704–2711PubMed
54.
Zurück zum Zitat Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617PubMedCrossRef Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617PubMedCrossRef
55.
Zurück zum Zitat Lerner I, Baraz L, Pikarsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676PubMedCrossRef Lerner I, Baraz L, Pikarsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676PubMedCrossRef
56.
Zurück zum Zitat Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230PubMedCrossRef Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230PubMedCrossRef
57.
Zurück zum Zitat Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11:427–452PubMedCrossRef Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11:427–452PubMedCrossRef
58.
Zurück zum Zitat Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F (2011) J cell mol med (PMID: 21029368) Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F (2011) J cell mol med (PMID: 21029368)
59.
Zurück zum Zitat Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073PubMedCrossRef Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073PubMedCrossRef
60.
Zurück zum Zitat Casu B, Guerrini M, Guglieri S et al (2004) Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem 47:838–848PubMedCrossRef Casu B, Guerrini M, Guglieri S et al (2004) Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem 47:838–848PubMedCrossRef
61.
Zurück zum Zitat Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702PubMed Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702PubMed
62.
Zurück zum Zitat McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14PubMedCrossRef McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14PubMedCrossRef
63.
Zurück zum Zitat Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z (2006) Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem 13:2101–2111PubMedCrossRef Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z (2006) Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem 13:2101–2111PubMedCrossRef
64.
Zurück zum Zitat Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I (2006) Neoplasia 8:1055–1061PubMedCrossRef Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I (2006) Neoplasia 8:1055–1061PubMedCrossRef
65.
Zurück zum Zitat El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) Clin Cancer Res 7(5):1299–1305PubMed El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) Clin Cancer Res 7(5):1299–1305PubMed
66.
Zurück zum Zitat Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X (2002) Surgery 132:326–333PubMedCrossRef Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X (2002) Surgery 132:326–333PubMedCrossRef
67.
Zurück zum Zitat Nagler R, Ben-Izhak O, Cohen-Kaplan V, Shafat I, Vlodavsky I, Akrish S, Ilan N (2007) Cancer 110:2732–2739PubMedCrossRef Nagler R, Ben-Izhak O, Cohen-Kaplan V, Shafat I, Vlodavsky I, Akrish S, Ilan N (2007) Cancer 110:2732–2739PubMedCrossRef
68.
Zurück zum Zitat Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2002) Mod Pathol 15:593–598PubMedCrossRef Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2002) Mod Pathol 15:593–598PubMedCrossRef
69.
Zurück zum Zitat Barash U, Cohen-Kaplan V, Arvatz G et al (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248PubMedCrossRef Barash U, Cohen-Kaplan V, Arvatz G et al (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248PubMedCrossRef
70.
Zurück zum Zitat Doviner V, Maly B, Kaplan V et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888PubMed Doviner V, Maly B, Kaplan V et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888PubMed
71.
Zurück zum Zitat Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309PubMedCrossRef Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309PubMedCrossRef
72.
Zurück zum Zitat Zetser A, Bashenko Y, Miao H-Q, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741PubMed Zetser A, Bashenko Y, Miao H-Q, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741PubMed
73.
Zurück zum Zitat Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226PubMedCrossRef Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226PubMedCrossRef
74.
Zurück zum Zitat Witz IP (2008) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229PubMedCrossRef Witz IP (2008) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229PubMedCrossRef
76.
Zurück zum Zitat Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedCrossRef Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedCrossRef
77.
Zurück zum Zitat Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedCrossRef Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedCrossRef
78.
79.
80.
Zurück zum Zitat Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Sem Cell Dev Biol 19:52–60CrossRef Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Sem Cell Dev Biol 19:52–60CrossRef
81.
Zurück zum Zitat Van Damme J, Struyf S, Opdenakker G (2004) Chemokine-protease interactions in cancer. Semin Cancer Biol 14:201–208PubMedCrossRef Van Damme J, Struyf S, Opdenakker G (2004) Chemokine-protease interactions in cancer. Semin Cancer Biol 14:201–208PubMedCrossRef
82.
Zurück zum Zitat Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64PubMedCrossRef Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64PubMedCrossRef
83.
Zurück zum Zitat Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233PubMedCrossRef Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233PubMedCrossRef
84.
Zurück zum Zitat Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111PubMedCrossRef Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111PubMedCrossRef
85.
Zurück zum Zitat Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60PubMedCrossRef Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60PubMedCrossRef
86.
Zurück zum Zitat Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636PubMedCrossRef Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636PubMedCrossRef
87.
Zurück zum Zitat Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4:e5181PubMedCrossRef Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4:e5181PubMedCrossRef
88.
Zurück zum Zitat Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4(3):e4947PubMedCrossRef Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4(3):e4947PubMedCrossRef
89.
Zurück zum Zitat Paget S (1889) The distribution of a secondary growths in cancer of the breast. Lancet 133:571–583CrossRef Paget S (1889) The distribution of a secondary growths in cancer of the breast. Lancet 133:571–583CrossRef
90.
Zurück zum Zitat Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedCrossRef Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedCrossRef
91.
Zurück zum Zitat Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRef Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRef
92.
Zurück zum Zitat Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedCrossRef Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedCrossRef
93.
Zurück zum Zitat Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef
94.
Zurück zum Zitat Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef
95.
Zurück zum Zitat Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRef Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRef
96.
Zurück zum Zitat Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Sem Cell Dev Biol 21:33–39CrossRef Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Sem Cell Dev Biol 21:33–39CrossRef
97.
Zurück zum Zitat Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem cell Dev Biol 221:19–25CrossRef Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem cell Dev Biol 221:19–25CrossRef
98.
Zurück zum Zitat Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRef Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRef
99.
Zurück zum Zitat Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef
100.
101.
Zurück zum Zitat Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRef Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRef
102.
Zurück zum Zitat Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedCrossRef Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedCrossRef
103.
Zurück zum Zitat Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Cur Opin Immunol 22:231–237CrossRef Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Cur Opin Immunol 22:231–237CrossRef
104.
Zurück zum Zitat Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266PubMedCrossRef Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266PubMedCrossRef
105.
Zurück zum Zitat Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196PubMedCrossRef Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196PubMedCrossRef
106.
Zurück zum Zitat Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRef Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRef
107.
Zurück zum Zitat Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616PubMedCrossRef Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616PubMedCrossRef
108.
Zurück zum Zitat Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14PubMedCrossRef Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14PubMedCrossRef
109.
110.
Zurück zum Zitat Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef
111.
Zurück zum Zitat Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRef Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRef
112.
Zurück zum Zitat Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570PubMed Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570PubMed
113.
Zurück zum Zitat Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92PubMedCrossRef Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92PubMedCrossRef
114.
Zurück zum Zitat Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRef Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRef
115.
Zurück zum Zitat Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedCrossRef Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedCrossRef
116.
Zurück zum Zitat Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMed Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMed
117.
Zurück zum Zitat Zcharia E, Metzger S, Chajek-ShaulL T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263PubMedCrossRef Zcharia E, Metzger S, Chajek-ShaulL T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263PubMedCrossRef
118.
Zurück zum Zitat Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33PubMedCrossRef Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33PubMedCrossRef
119.
Zurück zum Zitat Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288PubMedCrossRef Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288PubMedCrossRef
120.
Zurück zum Zitat Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRef Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRef
121.
Zurück zum Zitat Krieglstein CF, Cerwinka WH, Sprague AG et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782PubMed Krieglstein CF, Cerwinka WH, Sprague AG et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782PubMed
122.
Zurück zum Zitat Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRef Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRef
123.
Zurück zum Zitat Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19:872–874PubMed Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19:872–874PubMed
124.
Zurück zum Zitat Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881PubMedCrossRef Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881PubMedCrossRef
125.
Zurück zum Zitat Fukata M, Hernandez Y, Conduah D et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006PubMedCrossRef Fukata M, Hernandez Y, Conduah D et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006PubMedCrossRef
126.
Zurück zum Zitat Kumar V, Abbas A, Fausto N, (eds) (2005) Pathologic basis of disease: Elsevier Saunders Kumar V, Abbas A, Fausto N, (eds) (2005) Pathologic basis of disease: Elsevier Saunders
127.
Zurück zum Zitat de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD (2005) Early Growth Response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147PubMedCrossRef de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD (2005) Early Growth Response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147PubMedCrossRef
128.
Zurück zum Zitat Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658PubMedCrossRef Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658PubMedCrossRef
129.
Zurück zum Zitat Fiebiger E, Maehr R, Villadangos J et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269PubMedCrossRef Fiebiger E, Maehr R, Villadangos J et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269PubMedCrossRef
130.
Zurück zum Zitat Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533PubMedCrossRef Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533PubMedCrossRef
131.
Zurück zum Zitat Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM (2008) Molecular targeted therapies for pancreatic cancer. Am J Surg 196:430–441PubMedCrossRef Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM (2008) Molecular targeted therapies for pancreatic cancer. Am J Surg 196:430–441PubMedCrossRef
132.
Zurück zum Zitat Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708PubMedCrossRef Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708PubMedCrossRef
133.
Zurück zum Zitat Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94PubMedCrossRef Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94PubMedCrossRef
134.
Zurück zum Zitat Muller MW, Friess H, Koninger J et al (2008) Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas. Am J Surg 195:221–228PubMedCrossRef Muller MW, Friess H, Koninger J et al (2008) Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas. Am J Surg 195:221–228PubMedCrossRef
135.
Zurück zum Zitat Network NCC (2008) NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. v.1 Network NCC (2008) NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. v.1
136.
Zurück zum Zitat Cohen SJ, Dobelbower R Jr, Lipsitz S et al (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. Int J Radiat Oncol Biol Phys 62:1345–1350PubMedCrossRef Cohen SJ, Dobelbower R Jr, Lipsitz S et al (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. Int J Radiat Oncol Biol Phys 62:1345–1350PubMedCrossRef
137.
Zurück zum Zitat Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210PubMedCrossRef Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210PubMedCrossRef
138.
Zurück zum Zitat Camphausen K, Moses MA, Beecken W-D, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211PubMed Camphausen K, Moses MA, Beecken W-D, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211PubMed
139.
Zurück zum Zitat Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728PubMedCrossRef Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728PubMedCrossRef
140.
Zurück zum Zitat Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300PubMed Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300PubMed
141.
Zurück zum Zitat Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222PubMedCrossRef Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222PubMedCrossRef
142.
Zurück zum Zitat Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519PubMedCrossRef Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519PubMedCrossRef
143.
Zurück zum Zitat Qian L-W, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227PubMed Qian L-W, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227PubMed
144.
Zurück zum Zitat Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMed Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMed
145.
Zurück zum Zitat Meirovitz A, Hermano E, Lerner I et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780PubMedCrossRef Meirovitz A, Hermano E, Lerner I et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780PubMedCrossRef
146.
Zurück zum Zitat Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Cancer Res 61:4655–4659PubMed Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Cancer Res 61:4655–4659PubMed
147.
Zurück zum Zitat Quiros RM, Rao G, Plate J et al (2006) Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer 106:532–540PubMedCrossRef Quiros RM, Rao G, Plate J et al (2006) Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer 106:532–540PubMedCrossRef
148.
Zurück zum Zitat Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K (2002) Br J Cancer 86:1270–1275PubMedCrossRef Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K (2002) Br J Cancer 86:1270–1275PubMedCrossRef
149.
Zurück zum Zitat Hoffmann AC, Mori R, Vallbohmer D et al (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12:1674–1681PubMedCrossRef Hoffmann AC, Mori R, Vallbohmer D et al (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12:1674–1681PubMedCrossRef
150.
Zurück zum Zitat de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385PubMedCrossRef de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385PubMedCrossRef
151.
Zurück zum Zitat de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD (2007) Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82:1289–1300PubMedCrossRef de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD (2007) Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82:1289–1300PubMedCrossRef
152.
Zurück zum Zitat Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137PubMedCrossRef Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137PubMedCrossRef
153.
Zurück zum Zitat Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949PubMedCrossRef Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949PubMedCrossRef
154.
Zurück zum Zitat Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203PubMedCrossRef Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203PubMedCrossRef
155.
Zurück zum Zitat Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113PubMedCrossRef Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113PubMedCrossRef
156.
Zurück zum Zitat Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Rsd Res 51:643–650 Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Rsd Res 51:643–650
157.
Zurück zum Zitat Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S (2011) Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303:253–261PubMedCrossRef Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S (2011) Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303:253–261PubMedCrossRef
158.
Zurück zum Zitat Chen T, Tang XD, Wan Y et al (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986PubMed Chen T, Tang XD, Wan Y et al (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986PubMed
159.
Zurück zum Zitat Tang W, Nakamura Y, Tsujimoto M et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598PubMedCrossRef Tang W, Nakamura Y, Tsujimoto M et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598PubMedCrossRef
160.
Zurück zum Zitat Tang XD, Liang GP, Li C et al (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59:1041–1047PubMedCrossRef Tang XD, Liang GP, Li C et al (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59:1041–1047PubMedCrossRef
161.
Zurück zum Zitat Wang GZ, Tang XD, Lu MH, et al (2011) Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Canc Prev Res (PMID: 21505182) Wang GZ, Tang XD, Lu MH, et al (2011) Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Canc Prev Res (PMID: 21505182)
162.
Zurück zum Zitat Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76PubMed Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76PubMed
163.
Zurück zum Zitat Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157PubMedCrossRef Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157PubMedCrossRef
164.
Zurück zum Zitat Khazaie K, Prifti S, Beckhove P et al (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434PubMedCrossRef Khazaie K, Prifti S, Beckhove P et al (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434PubMedCrossRef
165.
Zurück zum Zitat Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534PubMedCrossRef Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534PubMedCrossRef
166.
Zurück zum Zitat Bai L, Beckhove P, Feuerer M et al (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73–83PubMedCrossRef Bai L, Beckhove P, Feuerer M et al (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73–83PubMedCrossRef
167.
Zurück zum Zitat Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087PubMedCrossRef Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087PubMedCrossRef
168.
Zurück zum Zitat Wagner P, Koch M, Nummer D et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317PubMedCrossRef Wagner P, Koch M, Nummer D et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317PubMedCrossRef
169.
Zurück zum Zitat Schuetz F, Ehlert K, Ge Y et al (2008) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef Schuetz F, Ehlert K, Ge Y et al (2008) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef
170.
Zurück zum Zitat Sommerfeldt N, Beckhove P, Ge Y et al (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–77123PubMedCrossRef Sommerfeldt N, Beckhove P, Ge Y et al (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–77123PubMedCrossRef
171.
Zurück zum Zitat Bonertz A, Weitz J, Pietsch DH et al (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMed Bonertz A, Weitz J, Pietsch DH et al (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMed
172.
Zurück zum Zitat Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef
173.
Zurück zum Zitat Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20:153–160PubMedCrossRef Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20:153–160PubMedCrossRef
174.
Zurück zum Zitat Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3:e2319PubMedCrossRef Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3:e2319PubMedCrossRef
175.
Zurück zum Zitat Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326PubMedCrossRef Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326PubMedCrossRef
176.
Zurück zum Zitat Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228PubMedCrossRef Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228PubMedCrossRef
177.
Zurück zum Zitat Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051PubMed Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051PubMed
178.
Zurück zum Zitat Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O (2000) Am J Pathol 157(4):1167–1175PubMedCrossRef Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O (2000) Am J Pathol 157(4):1167–1175PubMedCrossRef
179.
Zurück zum Zitat Brun R, Naroditsky I, Waterman M et al (2009) Heparanase expression by Barrett’s epithelium and during esophageal carcinoma progression. Mod Pathol 22:1548–1554PubMedCrossRef Brun R, Naroditsky I, Waterman M et al (2009) Heparanase expression by Barrett’s epithelium and during esophageal carcinoma progression. Mod Pathol 22:1548–1554PubMedCrossRef
180.
Zurück zum Zitat Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573PubMedCrossRef Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573PubMedCrossRef
181.
Zurück zum Zitat Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120PubMedCrossRef Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120PubMedCrossRef
182.
Zurück zum Zitat Kovalszky I, Dudas J, Olah-Nagy J et al (1998) Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183:11–23PubMedCrossRef Kovalszky I, Dudas J, Olah-Nagy J et al (1998) Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183:11–23PubMedCrossRef
183.
Zurück zum Zitat Ohkawa T, Naomoto Y, Takaoka M et al (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84:1289–1304PubMedCrossRef Ohkawa T, Naomoto Y, Takaoka M et al (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84:1289–1304PubMedCrossRef
184.
Zurück zum Zitat Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84:535–544PubMedCrossRef Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84:535–544PubMedCrossRef
185.
Zurück zum Zitat Kobayashi M, Naomoto Y, Nobuhisa T et al (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74:235–243PubMedCrossRef Kobayashi M, Naomoto Y, Nobuhisa T et al (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74:235–243PubMedCrossRef
186.
Zurück zum Zitat Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem PMID: 21757697 Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem PMID: 21757697
187.
Zurück zum Zitat Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp 58:45–56CrossRef Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp 58:45–56CrossRef
188.
Zurück zum Zitat van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J (2007) Heparanase in glomerular diseases. Kidney Int 72:543–548PubMedCrossRef van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J (2007) Heparanase in glomerular diseases. Kidney Int 72:543–548PubMedCrossRef
189.
Zurück zum Zitat Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15:68–78PubMedCrossRef Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15:68–78PubMedCrossRef
190.
Zurück zum Zitat Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60:1287–1296PubMedCrossRef Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60:1287–1296PubMedCrossRef
191.
Zurück zum Zitat Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology 10:167–173PubMedCrossRef Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology 10:167–173PubMedCrossRef
192.
Zurück zum Zitat Ritchie JP, Ramani VC, Ren Y et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393PubMedCrossRef Ritchie JP, Ramani VC, Ren Y et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393PubMedCrossRef
193.
Zurück zum Zitat Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729PubMedCrossRef Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729PubMedCrossRef
194.
Zurück zum Zitat Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30:253–268PubMedCrossRef Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30:253–268PubMedCrossRef
195.
Zurück zum Zitat Dredge K, Hammond E, Handley P et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642PubMedCrossRef Dredge K, Hammond E, Handley P et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642PubMedCrossRef
196.
Zurück zum Zitat Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654PubMedCrossRef Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654PubMedCrossRef
197.
Zurück zum Zitat Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) Int J Cancer 95:295–301PubMedCrossRef Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) Int J Cancer 95:295–301PubMedCrossRef
198.
Zurück zum Zitat Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) J Urol 166:1286–1290PubMedCrossRef Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) J Urol 166:1286–1290PubMedCrossRef
199.
200.
Zurück zum Zitat Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) J Cancer Res Clin Oncol 131:229–237PubMedCrossRef Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) J Cancer Res Clin Oncol 131:229–237PubMedCrossRef
201.
Zurück zum Zitat Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S (2004) J Surg Oncol 87:174–181PubMedCrossRef Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S (2004) J Surg Oncol 87:174–181PubMedCrossRef
203.
Zurück zum Zitat Endo K, Maejara U, Baba H, Tokunaga E, Koga T, Ikeda Y, Toh Y, Kohnoe S, Okamura T, Nakajima M, Sugimachi K (2001) Anticancer Res 21:3365–3369PubMed Endo K, Maejara U, Baba H, Tokunaga E, Koga T, Ikeda Y, Toh Y, Kohnoe S, Okamura T, Nakajima M, Sugimachi K (2001) Anticancer Res 21:3365–3369PubMed
204.
Zurück zum Zitat Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M (2003) Lab Invest 83:613–622PubMed Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M (2003) Lab Invest 83:613–622PubMed
205.
Zurück zum Zitat Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H (2004) Lung Canc (Amsterdam, Netherlands) 45: 207–214 Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H (2004) Lung Canc (Amsterdam, Netherlands) 45: 207–214
206.
Zurück zum Zitat Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Cancer 113:1004–1011PubMedCrossRef Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Cancer 113:1004–1011PubMedCrossRef
207.
Zurück zum Zitat Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD (2003) Cancer Res 63:8749–8756PubMed Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD (2003) Cancer Res 63:8749–8756PubMed
208.
Zurück zum Zitat Bar-Sela G, Kaplan-Cohen V, Ilan N, Vlodavsky I, Ben-Izhak O (2006) Histopathology 49:188–193PubMedCrossRef Bar-Sela G, Kaplan-Cohen V, Ilan N, Vlodavsky I, Ben-Izhak O (2006) Histopathology 49:188–193PubMedCrossRef
209.
Zurück zum Zitat Zheng LD, Tong QS, Tang ST, Du ZY, Liu Y, Jiang GS, Cai JB (2009) World J Pediatr 5:206–210PubMedCrossRef Zheng LD, Tong QS, Tang ST, Du ZY, Liu Y, Jiang GS, Cai JB (2009) World J Pediatr 5:206–210PubMedCrossRef
210.
Zurück zum Zitat Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA (2002) J Gastrointest Surg 6:167–172PubMedCrossRef Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA (2002) J Gastrointest Surg 6:167–172PubMedCrossRef
211.
Zurück zum Zitat Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Clin Cancer Res 14:6055–6061PubMedCrossRef Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Clin Cancer Res 14:6055–6061PubMedCrossRef
212.
Zurück zum Zitat Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R (2006) Neoplasia 8:879–884PubMedCrossRef Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R (2006) Neoplasia 8:879–884PubMedCrossRef
Metadaten
Titel
Significance of Heparanase in Cancer and Inflammation
verfasst von
Israel Vlodavsky
Phillip Beckhove
Immanuel Lerner
Claudio Pisano
Amichai Meirovitz
Neta Ilan
Michael Elkin
Publikationsdatum
01.08.2012
Verlag
Springer Netherlands
Erschienen in
Cancer Microenvironment / Ausgabe 2/2012
Print ISSN: 1875-2292
Elektronische ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-011-0082-7

Weitere Artikel der Ausgabe 2/2012

Cancer Microenvironment 2/2012 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.