Skip to main content
Erschienen in: Critical Care 1/2016

Open Access 01.12.2016 | Commentary

Ultra-protective ventilation and hypoxemia

verfasst von: Luciano Gattinoni

Erschienen in: Critical Care | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Partial extracorporeal CO2 removal allows a decreasing tidal volume without respiratory acidosis in patients with acute respiratory distress syndrome. This, however, may be associated with worsening hypoxemia, due to several mechanisms, such as gravitational and reabsorption atelectasis, due to a decrease in mean airway pressure and a critically low ventilation-perfusion ratio, respectively. In addition, an imbalance between alveolar and artificial lung partial pressures of nitrogen may accelerate the process. Finally, the decrease in the respiratory quotient, leading to unrecognized alveolar hypoxia and monotonous low plateau pressures preventing critical opening, may contribute to hypoxemia.
Hinweise
This comment refers to the article available at: http://​dx.​doi.​org/​10.​1186/​s13054-016-1211-y.

Competing interests

The author declares that he has no competing interests.
Abkürzungen
ARDS
acute respiratory distress syndrome
ECCO2R
extracorporeal carbon dioxide removal
FiO2
fraction of inspired oxygen
PaO2
alveolar partial pressure of oxygen
PEEP
positive end-expiratory pressure
Q
perfusion
R
respiratory quotient
TV
tidal volume
VA
ventilation
The capability to remove some of the metabolically produced CO2 with artificial lungs using a low extracorporeal blood flow (<1 l/min) and a high extracorporeal gas flow provides a key to significantly reduce mechanical ventilation (the ultra-protective strategy) [1]. This, and the easily established vascular access, make the method attractive for acute respiratory distress syndrome (ARDS) patients, in whom even the standard 6 ml/kg tidal volume (TV) may still produce unacceptable stress and strain [2]. In a recent multicenter study, Fanelli et al. [1] tested the feasibility of the ultra-protective strategy in combination with extracorporeal carbon dioxide removal (ECCO2R) in 15 patients with moderate ARDS. The authors concluded that one could use ultra-protective ventilation with a TV of 4 ml/kg without resulting relevant respiratory acidosis. The price of attaining this goal, however, appears quite high. Six of the 15 patients (40 %) with initially moderate ARDS experienced life-threatening hypoxemia and required either extracorporeal membrane oxygenation (ECMO) or the prone position. The authors concluded that the impact of the ultra-protective strategy, ECCO2R, on hypoxemia is not clear. We believe, however, that the observed hypoxemia is due to well-defined mechanisms acting simultaneously, which may be summarized as follows:
1)
Gravitational atelectasis: Whenever ventilation decreases (reduction of TV and/or respiratory rate) the mean airway pressure decreases, and the lungs tend to collapse. The greater the decrease in ventilation and the greater the lung weight, the greater will be the collapse. This phenomenon, albeit to a lesser extent, occurs in normal lungs on induction of anesthesia [3]. This has been observed experimentally during ECCO2R and mechanical ventilation [4]. Positive end-expiratory pressure (PEEP) must be increased by an amount sufficient to maintain the same mean airway pressure in order to preserve the open lung volume [5] otherwise some amount of gravitational collapse is unavoidable. In the study of Fanelli et al., the PEEP increase was so low as to be non-significant.
 
2)
Absorption atelectasis: At least two conditions favor the appearance of absorption atelectasis. Firstly, when ventilation is very low the amount of oxygen provided to some pulmonary units may be lower than the amount removed by the blood perfusing those units. This produces a collapse of the pulmonary unit when its ventilation (VA)/perfusion (Q) ratio reaches a critical level [6]. Secondly, if the artificial lung is ventilated with a fraction of inspired oxygen (FiO2) greater than that used for the natural lung, the partial pressure of nitrogen in the blood perfusing the natural lung is lower than that in the alveoli [7]. Under these conditions the critical VA/Q is reached more rapidly, since not only oxygen but also nitrogen leaves the alveoli. In the study by Fanelli et al., the artificial lungs were ventilated with an FiO2 of 1.0 in some of the centers, while the natural lungs were ventilated with an FiO2 of 0.5.
 
3)
Opening pressures: Sufficient pressure must be applied to reopen the atelectatic areas. Studies show that at least one normal TV every 2 min was mandatory in order to correct or prevent atelectasis, otherwise a consistent reduction in lung volume was observed [4]. This low frequency has an effect similar to sighing [8]. In ARDS patients with a plateau pressure of 25 cmH2O, as employed in the study by Fanelli et al., we may estimate that 30 to 40 % of the recruitable lung always remains closed [9, 10]. This implies that oxygenation cannot take place even during inspiration [11], and that newly formed atelectasis cannot be reopened.
 
4)
Alveolar PaO 2 and respiratory quotient: During ECCO2R, the respiratory quotient (R) decreases when the CO2 eliminated by the natural lungs decreases. To maintain the same alveolar partial pressure of oxygen (PaO2), the FiO2 must be increased. This has been proved experimentally [12] and can be easily derived from the alveolar gas equation [13]. The lower the FiO2, the greater the impact of R on alveolar PaO2. For example, with FiO2 = 0.3, partial pressure of CO2 = 50 mmHg, and R = 1.0, PaO2 is approximately 164 mmHg. With FiO2 kept constant at 0.3, alveolar PaO2 decreases to 113 mmHg when R is reduced to 0.5 and to as low as 48 mmHg when R is decreased to 0.3. The risk of unrecognized alveolar hypoxia as the cause of hypoxemia must be kept in mind during ECCO2R, particularly if a FiO2 below 0.4 is being used.
 
All discussed causes of hypoxemia may be prevented or corrected with the proper use of PEEP, FiO2 and recruitment maneuvers, e.g., intermittent sighs.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The author declares that he has no competing interests.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Fanelli V et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care. 2016;20(1):36.CrossRefPubMedPubMedCentral Fanelli V et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care. 2016;20(1):36.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Terragni PP et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175(2):160–6.CrossRefPubMed Terragni PP et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175(2):160–6.CrossRefPubMed
3.
Zurück zum Zitat Brismar B et al. Pulmonary densities during anesthesia with muscular relaxation—a proposal of atelectasis. Anesthesiology. 1985;62(4):422–8.CrossRefPubMed Brismar B et al. Pulmonary densities during anesthesia with muscular relaxation—a proposal of atelectasis. Anesthesiology. 1985;62(4):422–8.CrossRefPubMed
4.
Zurück zum Zitat Gattinoni L et al. Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LFPPV-ECCO2R): an experimental study. Anesth Analg. 1978;57(4):470–7.CrossRefPubMed Gattinoni L et al. Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LFPPV-ECCO2R): an experimental study. Anesth Analg. 1978;57(4):470–7.CrossRefPubMed
5.
Zurück zum Zitat Gattinoni L, Iapichino G, Kolobow T. Hemodynamic, mechanical and renal effects during “apneic oxygenation” with extracorporeal carbon dioxide removal, at different levels of intrapulmonary pressure in lambs. Int J Artif Organs. 1979;2(5):249–53.PubMed Gattinoni L, Iapichino G, Kolobow T. Hemodynamic, mechanical and renal effects during “apneic oxygenation” with extracorporeal carbon dioxide removal, at different levels of intrapulmonary pressure in lambs. Int J Artif Organs. 1979;2(5):249–53.PubMed
6.
Zurück zum Zitat Dantzker DR, Wagner PD, West JB. Proceedings: Instability of poorly ventilated lung units during oxygen breathing. J Physiol. 1974;242(2):72P.PubMed Dantzker DR, Wagner PD, West JB. Proceedings: Instability of poorly ventilated lung units during oxygen breathing. J Physiol. 1974;242(2):72P.PubMed
7.
Zurück zum Zitat Kolobow T et al. An alternative to breathing. J Thorac Cardiovasc Surg. 1978;75(2):261–6.PubMed Kolobow T et al. An alternative to breathing. J Thorac Cardiovasc Surg. 1978;75(2):261–6.PubMed
8.
Zurück zum Zitat Pelosi P et al. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(3):872–80.CrossRefPubMed Pelosi P et al. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(3):872–80.CrossRefPubMed
9.
Zurück zum Zitat Borges JB et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268–78.CrossRefPubMed Borges JB et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268–78.CrossRefPubMed
10.
Zurück zum Zitat Crotti S et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164(1):131–40.CrossRefPubMed Crotti S et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164(1):131–40.CrossRefPubMed
11.
Zurück zum Zitat Cressoni M et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology. 2015;123(3):618–27.CrossRefPubMed Cressoni M et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology. 2015;123(3):618–27.CrossRefPubMed
12.
Zurück zum Zitat Gattinoni L et al. Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth. 1978;50(8):753–8.CrossRefPubMed Gattinoni L et al. Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth. 1978;50(8):753–8.CrossRefPubMed
13.
Zurück zum Zitat Riley RL, Lilienthal Jr JL, et al. On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am J Physiol. 1946;147:191–8.PubMed Riley RL, Lilienthal Jr JL, et al. On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am J Physiol. 1946;147:191–8.PubMed
Metadaten
Titel
Ultra-protective ventilation and hypoxemia
verfasst von
Luciano Gattinoni
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2016
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1310-9

Weitere Artikel der Ausgabe 1/2016

Critical Care 1/2016 Zur Ausgabe

Mit dem Seitenschneider gegen das Reißverschluss-Malheur

03.06.2024 Urologische Notfallmedizin Nachrichten

Wer ihn je erlebt hat, wird ihn nicht vergessen: den Schmerz, den die beim Öffnen oder Schließen des Reißverschlusses am Hosenschlitz eingeklemmte Haut am Penis oder Skrotum verursacht. Eine neue Methode für rasche Abhilfe hat ein US-Team getestet.

Schlaganfall: frühzeitige Blutdrucksenkung im Krankenwagen ohne Nutzen

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Reanimation bei Kindern – besser vor Ort oder während Transport?

29.05.2024 Reanimation im Kindesalter Nachrichten

Zwar scheint es laut einer Studie aus den USA und Kanada bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.