Skip to main content
Erschienen in: Annals of Intensive Care 1/2021

Open Access 01.12.2021 | COVID-19 | Research

Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study

Prognosis of COVID-19 elderly critically ill patients in the ICU

verfasst von: Martin Dres, David Hajage, Said Lebbah, Antoine Kimmoun, Tai Pham, Gaëtan Béduneau, Alain Combes, Alain Mercat, Bertrand Guidet, Alexandre Demoule, Matthieu Schmidt, the COVID-ICU investigators

Erschienen in: Annals of Intensive Care | Ausgabe 1/2021

Abstract

Background

The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (> 70 years old) with COVID-19 admitted in the intensive care unit (ICU).

Methods

Characteristics, management, and prognosis of critically ill old patients (> 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality.

Results

The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72–78] years). Fifty-three percent, 31%, and 16% were 70–74, 75–79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2–3). Upon admission, the PaO2/FiO2 ratio was 154 (105–222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24–2.27; p < 0·001).

Conclusion

Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13613-021-00861-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a risk factor for acute respiratory distress syndrome (ARDS) that is currently a major healthcare challenge worldwide. The prognosis of this disease widely varies between countries, the age of the patients, the characteristics of the population studied, and the severity of the ARDS [1]. Then, the case fatality rates observed in ARDS-related SARS-CoV-2 is close to 30–40% [24], but can reach 70% in the older patients [57]. Given the heavy burden of ARDS-related SARS-CoV-2 infection in terms of health care resources and the worrisome prognosis of this disease, the pandemic has raised several ethical questions. One of them is the decision to admit the oldest patients in the ICU [8], which should be guided by robust data on the outcomes of that population. Therefore, there is an urgent need to provide consistent data on the management and prognosis of the elderly patients in the intensive care unit (ICU) [9]. These data may serve policymakers to properly and fairly allocate health care resources to that population and also to provide transparent information to the patient and caregivers. To date, few studies specifically reported the management and prognosis of the elderly patients in the context of SARS-CoV-2 lower respiratory tract infection [10, 11], but none were focused on a population admitted in ICU. In a large German study enrolling 10,021 patients, 923 (9%) patients over 70 years old received ventilatory support which was associated with 63% in-hospital mortality in those 70–79 years [4]. This result concurred with the dismal prognosis reported in previous studies focused on elderly patients with ARDS not related to SARS-CoV-2 infection [12, 13]. As the debate is still active whether the management of COVID-19 should differ from ARDS related to other causes [14], the specific ICU management and outcomes of the old patients with SARS-CoV-2 related ARDS has not been fully described so far. We sought to assess the characteristics, management, and prognosis of the patients over 70 years enrolled in the international COVID-ICU cohort [15].

Methods

Study design, patients

We performed an ancillary analysis of the COVID-ICU study. COVID-ICU was a multi-center, observational, and prospective cohort study conducted in 149 ICUs from 138 centers, across three countries (France, Switzerland, and Belgium) and has been described elsewhere [15]. It received approval from the ethical committee of the French Intensive Care Society (CE-SRLF 20-23) and Swiss and Belgium ethical committees following local regulations. All patients or close relatives were informed that their medical data were anonymously included in the COVID-ICU cohort. Patients and relatives had the possibility not to participate in the study. In case of refusal, the data were not collected accordingly. This manuscript follows the STROBE statement for reporting cohort studies.
For this analysis, we restricted the study population to patients who were 70 and above 70 years of age at the time of the admission to the participating ICU between February 25, 2020, and May 4, 2020, with laboratory-confirmed SARS-CoV-2 infection, and available Day-90 vital status. Laboratory confirmation for SARS-Cov-2 was defined as a positive result of real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay from either nasal or pharyngeal swabs, or lower respiratory tract aspirates [16].

Data collection

Full description of data collection is provided in the Additional file 1. Baseline information collected at ICU admission were: age, sex, body mass index (BMI), active smoking, Simplified Acute Physiology Score (SAPS) II score [17], worse Sequential Organ Failure Assessment (SOFA) [18] during the first 24 h, comorbidities, immunodeficiency (if present), Clinical Frailty Scale [19], the date of the first symptom, and dates of the hospital and ICU admissions. The Clinical Frailty Scale was collected upon ICU admission by the physician in charge of the patient during the medical examination. If the patient was not able to communicate, the physician obtained the information from the relatives. The Clinical Frailty Scale is an ordinal hierarchical scale of 9 ranks, with a score of 1 being very fit, 2 well, 3 managing well, 4 vulnerable, 5 mildly frail, 6 moderately frail, 7 severely frail, 8 very severely frail, and 9 terminally ill. We also collected modes of ventilation and oxygenation and complications over the ICU stay. Patient outcomes included duration of mechanical ventilation, vital status at ICU and hospital discharge, and 28, 60, and 90 days after ICU admission. Lastly, life-sustaining treatment decisions were also collected.

Statistical analyses

Characteristics of patients were described as frequencies and percentages for categorical variables, whereas continuous variables were reported as mean and standard deviation or median and interquartile range. Categorical variables were compared by Chi-square or Fisher's exact test, and continuous variables were compared by Student's t-test or Wilcoxon's rank-sum test. Kaplan–Meier overall survival curves until Day-90 were computed, and were compared using log-rank tests. Detailed statistical analysis is provided is the Additional file 1.
Baseline risk factors of death at Day-90 were assessed using univariate and multivariate Cox regression model stratified on the center variable. Proportional hazard assumption was assessed by inspecting the scaled Schoenfeld residuals and Harrell’s test [20]. To assess invasive mechanical ventilation effect on Day-90 mortality, we used a Cox proportional hazard model weighted on inverse probability of treatment weighting (IPTW) using propensity score (PS) defined as the predictive probability of invasive mechanical ventilation conditional on measured baseline covariates [21]. A multivariate logistic regression model was performed to estimate the PS for each patient in that population. To assess the balance of measured covariates between treatment groups, we used the standardized mean differences before and after PS weighting [22]. Then, a Cox proportional hazard model weighted on IPTW was performed to estimate the average treatment effect in the entire eligible population [21]. Hazard ratio and its 95% confidence interval were then estimated for the Day-90 mortality associated with invasive mechanical ventilation at Day-1. This analysis was performed on the complete cases data set, and a sensitivity analysis was performed using multiple imputations due to missing data.
All analyses were performed at a two-sided α level of 5% and conducted with R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Characteristics of patients at ICU admission

From the 4244 patients enrolled in the COVID-ICU dataset, 1199 (28%) (1115, 41, 43 patients in France, Switzerland, and Belgium, respectively) met the inclusion criteria of the present study (i.e., age over 70 years old) (see the Additional file 1: Figure S1). The main descriptors of the patient’s characteristics are presented in Table 1. The median (IQR) age was 74 (72–78) years. Fifty-three percent of the patients were 70–74 years old, 31% were 75–79 years old and 16% were over 80 years old. The majority of the patients were male (73%). The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Noticeably, the median (IQR) Clinical Frailty Scale was 3 (2–3), with only 160/1085 (15%) vulnerable patients (i.e., Clinical Frailty Scale 4), and 99/1085 (9%) frail patients (i.e., Clinical Frailty Scale 5–9). The time between first symptoms and ICU admission was 8 (6–12) days. SAPS II and SOFA scores at ICU admission were 43 (35–54) and 5 (3–8), respectively.
Table 1
Demographic characteristics and management during the first 14 days of ICU according to their Day-90 survival status
 
All patients
n=1199
Day-90 status
P value
Alive
n=650
Death
n=549
Age, years
74 (72–78)
73 (71–77)
75 (72–79)
< 0.001
 70–74
639 (53)
392 (60)
247 (45)
 
 75–79
367 (31)
194 (30)
173 (32)
 > 80
193 (16)
64 (9)
129 (24)
Body mass index, kg m–2
27 (25–31)
27 (25–31)
27 (25–30)
0.452
Female gender
326 (27)
177 (27)
149 (27)
0.989
Living place
   
0.007
 Home residency
1136 (95)
624 (96)
512 (94)
 
 Rehabilitation
14 (1)
5 (1)
9 (2)
 
 Retirement home
20 (2)
4 (1)
16 (3)
 
 Other
29 (2)
17 (2)
12 (2)
 
Comorbidities
    
 Hypertension
742 (62)
399 (62)
343 (63)
0.728
 Diabetes
355 (30)
160 (25)
195 (36)
< 0.001
 Active smokers
46 (4)
21 (3)
25 (5)
0.201
 Chronic respiratory disease
297 (25)
156 (24)
141 (26)
0.472
 Chronic cardiac disease
87 (8)
34 (5)
53 (10)
0.003
 Chronic renal insufficiency
108 (9)
44 (7)
64 (12)
0.003
 Immunosuppression
99 (8)
45 (7)
54 (10)
0.062
Clinical Frailty Scale
3 (2–3)
3 (2–3)
3 (2–4)
< 0.001
 1–3
826 (76)
498 (85)
328 (66)
 
 4
160 (15)
62 (11)
98 (20)
 5–9
99 (9)
29 (5)
70 (14)
ICU admission
    
 Time between hospital and ICU admission, days
1 (0–3)
1 (0–3)
0 (0–2)
0.066
 Time between first signs and ICU admission, days
8 (6–12)
10 (6–13)
7 (5–10)
< 0.001
 SAPS II
43 (35–54)
41 (33–51)
47 (38–57)
< 0.001
 SOFA score
5 (3–8)
4 (3–8)
6 (4–9)
< 0.001
  Renal component
0 (0–1)
0 (0–0)
0 (0–1)
< 0.001
  Cardiovascular component
1 (0–4)
0 (0–3)
3 (0–4)
< 0.001
During the first 24 hours in the ICU
    
 PaO2/FiO2 ratio
154 (105–222)
167 (115–224)
139 (94–212)
0.004
 Standard oxygen
339 (29)
210 (33)
129 (24)
< 0.001
  Flow, L/min
9 (6–15)
7 (5–15)
12 (7–15)
< 0.001
 High-flow oxygen therapy
249 (21)
150 (24)
99 (18)
0.025
  Flow, L/min
50 (40–60)
50 (40–60)
50 (40–50)
0.295
  FiO2, %
75 (60–94)
70 (60–85)
90 (70–100)
< 0.001
 Invasive mechanical ventilation
740 (62)
350 (54)
390 (71)
< 0.001
 Prone positioning
146 (20)
61 (18)
85 (22)
0.172
 Continuous neuromuscular blockades
517 (43)
251 (39)
266 (48)
0.383
During the first 14 days in the ICU
    
 High-flow oxygen therapy
331 (28)
208 (32)
123 (23)
0.002
 Invasive mechanical ventilation
936 (78)
461 (71)
475 (87)
< 0.001
 Prone positioning
613 (51)
274 (42)
339 (62)
0.001
 Continuous neuromuscular blockades
803 (67)
390 (60)
413 (75)
0.165
 Renal replacement therapy
231 (19)
84 (13)
147 (26)
< 0.001
 Corticosteroids
409 (34)
191 (30)
218 (40)
< 0.001
 Life sustaining treatment decision
253 (21)
30 (5)
223 (41)
< 0.001
Values are expressed as median (interquartile range) or n (%)
ICU intensive care unit, SAPS simplified acute physiology score, SOFA Sequential Organ Failure Assessment
Mortality was 41%, 45%, and 46% at Day-28, Day-60, and Day-90, respectively (Additional file 1: Table S1). Mortality at Day-90 increased with the age and the Clinical Frailty Scale (Fig. 1). Indeed, Day-90 mortality increased from 39% in the patients between 70 and 74 years to 47% and 67% in the groups of patients between 75 and 79 years and those over 80 years old, respectively (p < 0.001) (Fig. 2a). Similarly, mortality at Day-90 was 40%, 61%, and 71% in the patients' groups with Clinical Frailty Scale from 1–3; 4; and ≥ 5, respectively (p < 0.001) (Fig. 2b). The mortality was also higher in patients intubated during their ICU stay ranging from 44 to 74% (Additional file 1: Figure S2). Of note, during the period of the first 14 days following the ICU admission, 253/1,199 (21%) of the patients had a life-sustaining treatment limitation decision, whom 223 (88%) died at day 90 (207 (82%) while in the ICU).

Predictive factors of mortality at Day-90

Results of the multivariable analysis are reported in Table 2. Because of multicollinearity observed between age and Clinical Frailty Scale, invasive mechanical ventilation at Day-1 and PaO2/FiO2 ratio, renal replacement therapy and the renal component of the SOFA, only Clinical Frailty Scale, PaO2/FiO2 ratio, and the renal component of the SOFA were retained in the model. Day-1 patients’ characteristics significantly associated with a higher 90-Day mortality rate identified by the Cox regression model after center stratification were older age, diabetes, higher cardiovascular component of the SOFA score, lower PaO2/FiO2, and a shorter time between first symptoms and ICU admission (Table 2). The same analysis re-run of missing after multiple imputations data (Additional file 1: Table S2) yielded similar conclusions. Interestingly, being admitted to the ICU after March 29 was also associated with a better outcome (Additional file 1: Figure S3). Kaplan–Meier survival estimates according to age categories, Clinical Frailty Scale, and PaO2/FiO2 ratio at Day-1 of ICU admission are provided in Fig. 2.
Table 2
Predictive patient factors associated with Day-90 mortality in critically ill patients older than 70 years old with COVID-19 stratified on the center variable
 
No.
Univariate
HR (95% CI)
P value
Multivariate
HR (95% CI)
P value
Age, years
1199
< 0.001
 
 70–75
 
 
 
 75–79
 
1.32 (1.08–1.60)
 
 
 80–84
 
2.09 (1.64–2.68)
 
 
 85–91
 
4.09 (2.97–5.65)
 
 
Clinical Frailty Scale
1085
< 0.001
< 0.001
 1–3
 
 
 
 4
 
2.14 (1.71–2.68)
 
2.24 (1.63–3.09)
 
 5–9
 
2.81 (2.17–3.64)
 
2.83 (1.96–4.08)
 
Body mass index, kg/m2
1096
 
0.435
0.103
 < 25
   
 
 25–29
 
0.96 (0.77–1.20)
 
1.10 (0.83–1.48)
 
 30–34
 
0.85 (0.64–1.11)
 
0.78 (0.55–1.12)
 
 35–39
 
0.89 (0.61–1.31)
 
0.90 (0.53–1.51)
 
 ≥ 40
 
1.33 (0.83–2.13)
 
1.26 (0.72–2.22)
 
Diabetes
1184
1.43 (1.20–1.71)
< 0.001
1.42 (1.10–1.82)
0.043
Hypertension
1189
1.03 (0.87–1.23)
0.726
0.87 (0.68–1.12)
0.697
Immunodepression
1186
1.31 (0.99–1.74)
0.066
0.97 (0.63–1.48)
0.298
Time between first signs and ICU admission
1109
 
< 0.001
 
0.003
 < 4 days
 
 
 
 4–7 days
 
0.88 (0.70–1.12)
 
0.87 (0.63–1.18)
 
 ≥ 8 days
 
0.50 (0.40–0.64)
 
0.61 (0.44–0.84)
 
SOFA Cardiovascular component ≥3
1160
1.74 (1.47–2.07)
< 0.001
2.13 (1.66–2.74)
< 0.001
SOFA renal component ≥3
1140
1.84 (1.37–2.49)
< 0.001
1.39 (0.94–2.05)
0.909
Invasive mechanical ventilation at Day-1
1199
1.66 (1.38–1.99)
< 0.001
 
Renal replacement therapy at Day-1
1188
2.50 (1.67–3.73)
< 0.001
 
ICU admission after March 29th
1199
0.67 (0.56–0.80)
< 0.001
0.70 (0.55–0.89)
< 0.001
PaO2/FiO2 ratio
868
 
< 0.001
0.001
 200 < PaO2/FiO2
 
 
 
 100 < PaO2/FiO2 ≤ 200
 
1.14 (0.90–1.44)
 
1.28 (0.97–1.69)
 
 PaO2/FiO2 ≤ 100
 
1.68 (1.30–2.16)
 
2.35 (1.73–3.19)
 
Age, invasive mechanical ventilation and renal replacement therapy variables were excluded from multivariate analysis for multicollinearity issue
CI confidence interval, HR hazard ratio, ICU intensive care unit, SOFA Sequential Organ Failure Assessment

Propensity score analysis

Six hundred and forty-four patients had a cardiovascular component of the SOFA < 2, comprising 425 patients intubated on Day-1 and 219 initially treated without invasive mechanical ventilation. These two groups differed in several respects (Additional file 1: Table S3). Patients intubated on Day-1 had a higher SOFA cardiovascular component and were more likely admitted to the ICU before March 28. Interestingly, their Clinical Frailty Scale, their BMI, the time between first symptoms and ICU admission, and the PaO2/FiO2 ratio were not different. After weighting on the Inverse Probability Weighting Treatment using propensity score estimated in 269 patients with no missing values, 123 non-intubated patients were compared to 146 patients intubated at Day-1 with a similar medical history and initial severity Additional file 1: Table S3). We found a significantly different Day-90 mortality (28% in the non-intubated group vs. 42% in the intubated group; HR 1.68; 95% CI 1.24–2.27; p < 0.001) (Fig. 3). A similar analysis performed after multiple imputations of missing data (i.e., 644 patients) yielded similar conclusions (HR 1.33; 95% CI 1.11–1.59; p = 0.002).

Discussion

Herein, we report the characteristics, management, and outcomes of a large prospective cohort of old critically ill patients during the first wave of the COVID-19 outbreak. Patients over 70 years represented 28% of the COVID-19 population admitted during that period of 8 weeks in the participating ICUs. Their overall Day-90 mortality was 46%, which increased with the age and the Clinical Frailty Scale and reached 67% for the patients over 80 years. Older age, diabetes, a longer time between first symptoms and ICU admission, a SOFA cardiovascular component ≥ 3, a lower PaO2/FiO2 ratio, and being admitted to the ICU during the first month of the pandemic were independent risk factors of Day-90 mortality. Noticeably, our propensity score analysis suggests that an early invasive mechanical ventilation strategy seemed associated with a worse prognosis in that population.
The mortality of elderly patients admitted in the ICU for SARS-Cov-2-related ARDS varied from 77 to 84% [1]. These mortality rates appear very high compared to those reported in ARDS outside COVID-19 [12, 23]. For instance, the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) reported Day-90 mortality rates of 47%, 51%, and 50% for the 70–74 years, 75–79, and > 80 years old patients, respectively (unpublished data, personal communication from the authors) [24]. Our Day-90 mortality (46%) contrasts with early reports (1–3) and the large German cohort of 10,021 patients (923 patients over 70 years) [4] despite a large proportion of patients intubated during their ICU stay in our study (78%). It was, however much higher than the 25% Day-90 mortality observed in the rest of the population of the COVID-ICU cohort (i.e., patients < 70 years old) [15]. Besides, the mortality of our patients over 80 years old seems higher when compared with same-age patients with non-COVID-19-related ARDS, planned [25], or unplanned ICU admission [26]. Several factors such as triage policy before ICU admission, ICU resources at the time of the pandemic, ICU case volume [27] and patients’ comorbidities may explain these discrepancies.
Before the context of COVID-19, frailty as measured with the Clinical Frailty Scale in elderly critically ill patients was strongly associated with Day-30 mortality [26]. This tool was even a better predictor of mortality than SOFA score [25] or classical geriatric scales [26]. Recently, in a large observational study performed in the United Kingdom that enrolled 1564 COVID-19 patients with a median age of 74 years, and more than 50% of the population with a Clinical Frailty Scale > 4, the crude hazard ratio (95% confidence interval) for mortality were 3.12 (2.05–4.76) and 4.41 (2.90–6.71) for those with a Clinical Frailty Scale of 5–6 and 7 to 9, respectively [11]. However, the overall low Clinical Frailty Scale reported in our study and our low proportion of vulnerable or frail patients suggest that a significant triage was performed before ICU admission [28]. No national ICU admission criteria policy was provided at the time of the study, and the ICU admission decision was left to the discretion of the physicians in charge of the patient. Whether this triage resulted from intensivist’s evaluation, non-intensivists practitioner’s judgment, ICU beds occupancy, or the patients themselves should be further investigated.
Old patients admitted to the ICU with COVID-19 are at increased risk of death [3, 29] and the decision of ICU admission can be challenging [8]. The use of the Clinical Frailty Scale has proven to be helpful in this context [9]. Besides, the respect of the patient’s wishes and values, expressed directly by the patient via advance directives or reported by the healthcare surrogate should have to be taken into consideration [30]. In old patients with an uncertain prognosis, it can be particularly difficult to decide whether or not to admit to the ICU and provide invasive treatments such as mechanical ventilation. In such circumstances, an “ICU-trial of limited-time” has been proposed [31]. However, in the context of COVID-19, this strategy could be challenging as a long invasive mechanical duration is often required to see any clinical improvement. In other words, an ICU trial with a too-short limited-time could lead to misinterpretation and ethical misconduct. This important point is reinforced by the extremely long durations of invasive mechanical ventilation, and ICU length of stay observed in our surviving patients.
Beyond the admission of elderly patients in the ICU, the decision of the timing of intubation remains crucial. The majority of our patients (62%) were intubated on ICU Day-1. Interestingly, apart from obvious reasons such as hemodynamic instability, relevant clinical differences were scarce between patients who were intubated upon admission and those who were not. For instance, their Clinical Frailty Scale, time between first symptoms and ICU admission, and PaO2/FiO2 ratio were not significantly different, suggesting that the decision of intubation on admission was mainly driven by the experience of the physicians and the limited knowledge of this new disease at that time. As reported by others [32], the proportion of patients being intubated upon ICU admission during the first period of the study decreased from 67 to 56% during the last month (after March 29th, 2020), with being admitted in that latter period independently associated with a lower Day-90 mortality. An early intubation strategy was even associated with a poorer outcome in our matching analysis while further studies are warranted to confirm this finding. Less reluctance of the caregivers to provide non-invasive oxygen strategies along the first COVID-19 wave has been reported [15], but the benefit in terms of survival is still uncertain [33]. These strategies seem promising in that at-risk population where patients receiving invasive mechanical ventilation are more likely to experience long-term physical, neuropsychiatric, and quality of life impairments [34, 35].
Our study is a large international cohort of old critically ill patients with detailed characteristics and Day-90 outcome. However, despite a large number of participating ICUs, our population sample may be prone to selection biases that may limit generalizability. Since the study was mainly conducted in France (1115, 41 and 43 patients in France, Switzerland, and Belgium, respectively) during a period with high pressure on the health system and before the publication of several core randomized trials [36, 37], our findings may differ during subsequent COVID-19 outbreaks, and in countries with different public health care organizations, ICU admission policy, or ICU resources [4]. Comparison with further studies from other countries will help to better allocate health care resources and determine the indications and contra-indications of non-invasive ventilatory strategies in this specific population. Besides, we only provided data on patients who were admitted to the ICU, and no information was available on treatments before ICU admission nor on patients for whom an ICU admission was denied in the participating ICUs. Besides, important detailed information is also lacking regarding therapy limitations. This information would have allowed a thorough investigation of ICU-admission criteria used during this surge of ICU resources.

Conclusions

During the first COVID-19 pandemic wave, patients over 70 years old represented more than a quarter of the COVID-19 population in the participating ICUs of that study. Their overall Day-90 mortality was 46% with a dismal prognosis in patients older than 80 years old. Given the very long duration of mechanical ventilation as well as a prolonged ICU and hospital stay in the survivors, further studies are urgently warranted to evaluate the long-term psychological, neurocognitive, and functional outcomes of this high-risk and vulnerable population.

Acknowledgements

The authors are particularly grateful to all caregivers, COVID-ICU investigators and patients who have been involved in the study. Participating sites and COVID-ICU investigators: CHU Angers, Angers, France (Alain Mercat, Pierre Asfar, François Beloncle, Julien Demiselle), APHP—Hôpital Bicêtre, Le Kremlin-Bicêtre, France (Tài Pham, Arthur Pavot, Xavier Monnet, Christian Richard), APHP—Hôpital Pitié Salpêtrière, Paris, France (Alexandre Demoule, Martin Dres, Julien Mayaux, Alexandra Beurton), CHU Caen Normandie—Hôpital Côte de Nacre, Caen, France, (Cédric Daubin, Richard Descamps, Aurélie Joret, Damien Du Cheyron), APHP—Hôpital Cochin, Paris, France (Frédéric Pene, Jean-Daniel Chiche, Mathieu Jozwiak, Paul Jaubert), APHP—Hôpital Tenon, Paris (France, Guillaume Voiriot, Muriel Fartoukh, Marion Teulier, Clarisse Blayau), CHRU de Brest—La Cavale Blanche, Brest, France (Erwen L'Her, Cécile Aubron, Laetitia Bodenes, Nicolas Ferriere), Centre Hospitalier de Cholet, Cholet, France (Johann Auchabie, Anthony Le Meur, Sylvain Pignal, Thierry Mazzoni), CHU Dijon Bourgogne, Dijon, France (Jean-Pierre Quenot, Pascal Andreu, Jean-Baptiste Roudau, Marie Labruyère), CHU Lille—Hôpital Roger Salengero, Lille, France (Saad Nseir, Sébastien Preau, Julien Poissy, Daniel Mathieu), Groupe Hospitalier Nord Essonne, Longjumeau, France (Sarah Benhamida, Rémi Paulet, Nicolas Roucaud, Martial Thyrault), APHM—Hopital Nord, Marseille, France (Florence Daviet, Sami Hraiech, Gabriel Parzy, Aude Sylvestre), Hôpital de Melun-Sénart, Melun, France (Sébastien Jochmans, Anne-Laure Bouilland, Mehran Monchi), Élément Militaire de Réanimation du SSA, Mulhouse, France (Marc Danguy des Déserts, Quentin Mathais, Gwendoline Rager, Pierre Pasquier), CHU Nantes—Hôpital Hotel Dieu, Nantes, France (Reignier Jean, Seguin Amélie, Garret Charlotte, Canet Emmanuel), CHU Nice—Hôpital Archet, Nice, France (Jean Dellamonica, Clément Saccheri, Romain Lombardi, Yanis Kouchit), Centre Hospitalier d'Orléans, Orléans, France (Sophie Jacquier, Armelle Mathonnet, Mai-AhnNay, Isabelle Runge), Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France (Frédéric Martino, Laure Flurin, Amélie Rolle, Michel Carles), Hôpital de la Milétrie, Poitiers, France (Rémi Coudroy, Arnaud W Thille, Jean-Pierre Frat, Maeva Rodriguez), Centre Hospitalier Roanne, Roanne, France (Pascal Beuret, Audrey Tientcheu, Arthur Vincent, Florian Michelin), CHU Rouen—Hôpital Charles Nicolle, Rouen, France (Marie Anne Melone, Maxime Gauzi, Arnaud Guilbert, Geoffrey Kouadri), CHRU Tours—Hôpital Bretonneau, Tours, France (Valérie Gissot, Stéphan Ehrmann, Charlotte Salmon Gandonniere, Djlali Elaroussi), Centre Hospitalier Bretagne Atlantique, Vannes, France (Agathe Delbove, Yannick Fedun, Julien Huntzinger, Eddy Lebas), CHU Liège, Liège, Belgique (Grâce Kisoka, Céline Grégoire, Stella Marchetta, Bernard Lambermont), Hospices Civils de Lyon—Hôpital Edouard Herriot, Lyon, France (Laurent Argaud, Thomas Baudry, Pierre-Jean Bertrand, Auguste Dargent), Centre Hospitalier Du Mans, Le Mans, France (Christophe Guitton, Nicolas Chudeau, Mickaël Landais, Cédric Darreau), Centre Hospitalier de Versailles, Le Chesnay, France (Alexis Ferre, Antoine Gros, Guillaume Lacave, Fabrice Bruneel), Hôpital Foch, Suresnes, France (Mathilde Neuville, JérômeDevaquet, Guillaume Tachon, Richard Gallot), Hôpital Claude Galien, Quincy sous Senart, France (Riad Chelha, Arnaud Galbois, Anne Jallot, Ludivine Chalumeau Lemoine), GHR Mulhouse Sud-Alsace, Mulhouse, France (Khaldoun Kuteifan, Valentin Pointurier, Louise-Marie Jandeaux, Joy Mootien), APHP—Hôpital Antoine Béclère, Clamart, France (Charles Damoisel, Benjamin Sztrymf), APHP—Hôpital Pitié-Salpêtrière, Paris, France (Matthieu Schmidt, Alain Combes, Juliette Chommeloux, Charles Edouard Luyt), Hôpital Intercommunal de Créteil, Créteil, France (Frédérique Schortgen, Leon Rusel, Camille JUNG), Hospices Civils de Lyon—Hôpital Neurologique, Lyon, France (Florent Gobert), APHP—Hôpital Necker, Paris, France (Damien Vimpere, Lionel Lamhaut), Centre Hospitalier Public du Cotentin—Hôpital Pasteur, Cherbourg-en-cotentin, France (Bertrand Sauneuf, Liliane Charrrier, Julien Calus, Isabelle Desmeules), CHU Rennes—Hôpital du Pontchaillou, Rennes, France (Benoît Painvin, Jean-Marc Tadie), CHU Strasbourg—Hôpital Hautepierre, Strasbourg, France (Vincent Castelain, Baptiste Michard, Jean-Etienne Herbrecht, Mathieu Baldacini), APHP—Hôpital Pitié Salpêtrière, Paris, France (Nicolas Weiss, Sophie Demeret, Clémence Marois, Benjamin Rohaut), Centre Hospitalier Territorial Gaston-Bourret, Nouméa, France (Pierre-Henri Moury, Anne-Charlotte Savida, Emmanuel Couadau, Mathieu Série), Centre Hospitalier Compiègne-Noyon, Compiègne, France (Nica Alexandru), Groupe Hospitalier Saint-Joseph, Paris, France (Cédric Bruel, Candice Fontaine, Sonia Garrigou, Juliette Courtiade Mahler), Centre hospitalier mémorial de Saint-Lô, Saint-Lô, France (Maxime Leclerc, Michel Ramakers), Grand Hôpital de l'Est Francilien, Jossigny, France (Pierre Garçon, Nicole Massou, Ly Van Vong, Juliane Sen), Gustave Roussy, Villejuif, France (Nolwenn Lucas, Franck Chemouni, Annabelle Stoclin), Centre Hospitalier Intercommunal Robert Ballanger, Aulnay-sous-Bois, France (Alexandre Avenel, Henri Faure, Angélie Gentilhomme, Sylvie Ricome), Hospices Civiles de Lyon—Hôpital Edouard Herriot, Lyon, France (Paul Abraham, Céline Monard, Julien Textoris, Thomas Rimmele), Centre Hospitalier d'Avignon, Avignon, France (Florent Montini), Groupe Hospitalier Diaconesses—Croix Saint Simon, Paris, France (Gabriel Lejour, Thierry Lazard, Isabelle Etienney, Younes Kerroumi), CHU Clermont-Ferrand—Hôpital Gabriel Montpied, Clermont Ferrand, France (Claire Dupuis, Marine Bereiziat, Elisabeth Coupez, François Thouy), Hôpital d'Instruction des Armées Percy, Clamart, France (Clémet Hoffmann, Nicolas Donat, Violaine Muller, Thibault Martinez), CHU Nancy—Hôpital Brabois, Vandoeuvre-les-Nancy, France (Antoine Kimmoun, Audrey Jacquot, Matthieu Mattei, Bruno Levy), Centre Hospitalier de Vichy, Vichy, France (Ramin Ravan, Loïc Dopeux, Jean-Mathias Liteaudon, Delphine Roux), Hopital Pierre Bérégovoy, Nevers, France (Brice Rey, Radu Anghel, Deborah Schenesse, Vincent Gevrey), Centre Hospitalier de Tarbes, Tarbes, France (Jermy Castanera, Philippe Petua, Benjamin Madeux), Hôpitaux Civils de Colmar—Hôpital Louis pasteur, Colmar, France (Otto Hartman), CHU Charleroi—Hôpital Marie Curie, Bruxelles, Belgique (Michael Piagnerelli, Anne Joosten,Cinderella Noel, Patrick Biston), Centre hospitalier de Verdun Saint Mihiel, Saint Mihiel, France (Thibaut Noel), CH Eure-Seine—Hôpital d'Evreux-Vernon, Evreux, France (Gurvan LE Bouar, Messabi Boukhanza, Elsa Demarest, Marie-France Bajolet), Hôpital René Dubos, Pontoise, France (Nathanaël Charrier, Audrey Quenet, Cécile Zylberfajn, Nicolas Dufour), APHP—Hôpital Lariboisière, Paris, France (Buno Mégarbane, SqébastianVoicu, Nicolas Deye, Isabelle Malissin), Centre Hospitalier de Saint-Brieuc, Saint-Brieuc, France (François Legay, Matthieu Debarre, Nicolas Barbarot, Pierre Fillatre), Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France (Bertrand Delord, Thomas Laterrade, Tahar Saghi, Wilfried Pujol), HIA Sainte Anne, Toulon, France (Pierre Julien Cungi, Pierre Esnault, Mickael Cardinale), Grand Hôpital de l'Est Francilien, Meaux, France (Vivien Hong Tuan Ha, Grégory Fleury, Marie-Ange Brou, Daniel Zafimahazo), HIA Robert Picqué, Villenave d'Ornon, France (David Tran-Van, Patrick Avargues, Lisa Carenco), Centre Hospitalier Fontainebleau, Fontainebleau, France (Nicolas Robin, Alexandre Ouali, Lucie Houdou), Hôpital Universitaire de Genève, Genève, Suisse (Christophe Le Terrier, Noémie Suh, Steve Primmaz, JéromePugin), APHP—Hôpital Beaujon, Clichy, France (Emmanuel Weiss, Tobias Gauss, Jean-Denis Moyer, Catherine PaugamBurtz), Groupe Hospitalier Bretage Sud, Lorient, France (Béatrice La Combe, Rolland Smonig, Jade Violleau, Pauline Cailliez), Centre Hospitalier Intercommunal Toulon, La Seyne sur Mer, France (Jonathan Chelly), Centre Hospitalier de Dieppe, Dieppe, France (Antoine Marchalot, Cécile Saladin, Christelle Bigot), CHU de Martinique, Fort-de-France, France (Pierre-Marie Fayolle, Jules Fatséas, Amr Ibrahim, Dabor Resiere), Hôpital Fondation Adolphe de Rothchild, Paris, France (Rabih Hage, Clémentine Cholet, Marie Cantier, Pierre Trouiler), APHP—Bichat Claude Bernard, Paris, France (Philippe Montravers, Brice Lortat-Jacob, Sebastien Tanaka, AlexyTran Dinh), APHP—Hôpital Universitaire Paris Sud, Bicêtre, France (Jacques Duranteau, Anatole Harrois, Guillaume Dubreuil, Marie Werner), APHP—Hôpital Européen Georges Pompidou, Paris, France (Anne Godier, Sophie Hamada, Diane Zlotnik, Hélène Nougue), APHP, GHU Henri Mondor, Créteil, France (Armand Mekontso-Dessap, Guillaume Carteaux, Keyvan Razazi, Nicolas De Prost), APHP—Hôpitaux Universitaires Henri Mondor, Créteil, France (Nicolas Mongardon, Olivier Langeron, Eric Levesque, Arié Attias), APHP—Hôpital Lariboisière, Paris, France (Charles de Roquetaillade, Benjamin G. Chousterman, Alexandre Mebazaa, Etienne Gayat), APHP—Hôpital Saint-Antoine, Paris, France (Marc Garnier, Emmanuel Pardo, LeaSatre-Buisson, Christophe Gutton), APHP Hôpital Saint-Louis, Paris, France (Elise Yvin, Clémence Marcault, Elie Azoulay, Michael Darmon), APHP—Hôpital Saint-Antoine, Paris, France (Hafid Ait Oufella, Geoffroy Hariri, Tomas Urbina, Sandie Mazerand), APHP—Hôpital Raymond Pointcarré, Garches, France (Nicholas Heming, Francesca Santi, Pierre Moine, Djillali Annane), APHP—Hôpital Pitié Salpêtrière, Paris, France (Adrien Bouglé, Edris Omar, Aymeric Lancelot, Emmanuelle Begot), Centre Hospitalier Victor Dupouy, Argenteuil, France (Gaétan Plantefeve, Damien Contou, Hervé Mentec, Olivier Pajot), CHU Toulouse—Hôpital Rangueil, Toulouse, France (Stanislas Faguer, Olivier Cointault, Laurence Lavayssiere, Marie-Béatrice Nogier), Centre Hospitalier de Poissy, Poissy, France (Matthieu Jamme, Claire Pichereau, Jan Hayon, Hervé Outin), APHP—Hôpital Saint-Louis, Paris, France (François Dépret, Maxime Coutrot, Maité Chaussard, Lucie Guillemet), Clinique du MontLégia, CHC Groupe-Santé, Liège, Belgique (Pierre Goffin, Romain Thouny, Julien Guntz, Laurent Jadot), CHU Saint-Denis, La Réunion, France (Romain Persichini), Centre Hospitalier de Tourcoing, Tourcoing, France (Vanessa Jean-Michel, Hugues Georges, Thomas Caulier), Centre Hospitalier Henri Mondor d'Aurillac, Aurillac, France (Gaël Pradel, Marie-Hélène Hausermann, ThiMy Hue Nguyen-Valat, Michel Boudinaud), Centre Hospitalier Saint Joseph Saint Luc, Lyon, France (Emmanuel Vivier, SylvèneRosseli, Gaël Bourdin, Christian Pommier) Centre Hospitalier de Polynésie Française, Polynésie, France (Marc Vinclair, Simon Poignant, Sandrine Mons), Ramsay Générale de Santé, Hôpital Privé Jacques Cartier, Massy, France (Wulfran Bougouin), Centre Hospitalier Alpes Léman, Contamine sur Arve, France (Franklin Bruna, Quentin Maestraggi, Christian Roth), Hospices Civils de Lyon—Hôpital de la Croix Rousse, Lyon, France (Laurent Bitker, François Dhelft, Justine Bonnet-Chateau, Mathilde Filippelli), Centre Cardiologique du Nord, Saint-Denis, France (Tristan Morichau-Beauchant, Stéphane Thierry, Charlotte Le Roy, Mélanie Saint Jouan), GHU—Hôpital Saint-Anne, Paris, France (Bruno Goncalves, Aurélien Mazeraud, Matthieu Daniel, Tarek Sharshar) CHR Metz—Hôpital Mercy, Metz, France (Cyril Cadoz, RostaneGaci, Sébastien Gette, Guillaune Louis), APHP—Hôpital Paul Brousse, Villejuif, France (Sophe-Caroline Sacleux, Marie-Amélie Ordan), CHRU Nancy—Hôpital Central, Nancy, France (Aurélie Cravoisy, Marie Conrad, Guilhem Courte, Sébastien Gibot), Centre Hospitalier d’Ajaccio, Ajaccio, France (Younès Benzidi, Claudia Casella, Laurent Serpin, Jean-Lou Setti), Centre Hospitalier de Bourges, Bourges, France (Marie-Catherine Besse, Anna Bourreau), Centre hospitalier de la Côte Basque, Bayonne, France (Jérôme Pillot, Caroline Rivera, Camille Vinclair, Marie-Aline Robaux), Hospices Civils de Lyon—Hôpital de la Croix Rousse, Lyon, France (Chloé Achino, Marie-Charlotte Delignette, Tessa Mazard, Frédéric Aubrun), CH Saint-Malo, Saint-Malo, France (Bruno Bouchet, Aurélien Frérou, Laura Muller, Charlotte Quentin), Centre Hospitalier de Mulhouse, Mulhouse, France (Samuel Degoul), Centre Hospitalier de Briançon, Briançon, France (Xavier Stihle, Claude Sumian, Nicoletta Bergero, Bernard Lanaspre), CHU Nice, Hôpital Pasteur 2, Nice, France (Hervé Quintard, Eve Marie Maiziere), Centre Hospitalier des Pays de Morlaix, Morlaix, France (Pierre-Yves Egreteau, Guillaume Leloup, Florin Berteau, Marjolaine Cottrel), Centre Hospitalier Valence, Valence, France (Marie Bouteloup, Matthieu Jeannot, Quentin Blanc, Julien Saison), Centre Hospitalier Niort, Niort, France (Isabelle Geneau, Romaric Grenot, Abdel Ouchike, Pascal Hazera), APHP—Hôpital Pitié Salpêtrière, Paris, France (Anne-Lyse Masse, Suela Demiri, Corinne Vezinet, Elodie Baron, Deborah Benchetrit, Antoine Monsel), Clinique du Val d'Or, Saint Cloud, France (Grégoire Trebbia, Emmanuelle Schaack, Raphaël Lepecq, Mathieu Bobet), Centre Hospitalier de Béthune, Béthune, France (Christophe Vinsonneau, Thibault Dekeyser, Quentin Delforge, Imen Rahmani), Groupe Hospitalier Intercommunal de la Haute-Saône, Vesoul, France (Bérengère Vivet, Jonathan Paillot, Lucie Hierle, Claire Chaignat, Sarah Valette), Clinique Saint-Martin, Caen, France (BenoïtHer, Jennifier Brunet), Ramsay Générale de Santé, Clinique Convert, Bourg en Bresse, France (Mathieu Page, Fabienne Boiste, Anthony Collin), Hôpital Victor Jousselin, Dreux, France(Florent Bavozet, Aude Garin,Mohamed Dlala, KaisMhamdi), Centre Hospitalier de Troye, Troye, France, (Bassem Beilouny, Alexandra Lavalard, Severine Perez), CHU de ROUEN-Hôpital Charles Nicolle, Rouen, France (Benoit Veber, Pierre-Gildas Guitard, Philippe Gouin, Anna Lamacz), Centre Hospitalier Agen-Nérac, Agen, France (Fabienne Plouvier, Bertrand P delaborde, AïssaKherchache, Amina Chaalal), APHP—Hôpital Louis Mourier, Colombes, France (Jean-Damien Ricard, Marc Amouretti, Santiago Freita-Ramos, Damien Roux), APHP—Hôpital Pitié-Salpêtrière, Paris, France (Jean-Michel Constantin, Mona Assefi, Marine Lecore, Agathe Selves), Institut Mutualiste Montsouris, Paris, France (Florian Prevost, Christian Lamer, Ruiying Shi, Lyes Knani), CHU Besançon—Hôpital Jean Minjoz, Besançon, France, (Sébastien PiliFloury, Lucie Vettoretti), APHP—Hôpital Universitaire Robert-Debré, Paris, France (Michael Levy, Lucile Marsac, Stéphane Dauger, Sophie Guilmin-Crépon), CHU Besançon—Hôpital Jean Minjoz, Besançon, France, (Hadrien Winiszewski, Gael Piton, Thibaud Soumagne, Gilles Capellier); Médipôle Lyon-Villeurbanne, Vileurbanne, France, (Jean-Baptiste Putegnat, Frédérique Bayle, Maya Perrou, Ghyslaine Thao), APHP—Ambroise Paré, Boulogne-Billancourt, France (Guillaume Géri, Cyril Charron, Xavier Repessé, Antoine Vieillard-Baron), CHU Amiens Picardie, Amiens, France (Mathieu Guilbart, Pierre-Alexandre Roger, Sébastien Hinard, Pierre-Yves Macq), Hôpital Nord-Ouest, Villefranche-sur-Saône, France (Kevin Chaulier, Sylvie Goutte), CH de Châlons en Champagne, Châlons en Champagne, France (Patrick Chillet, Anaïs Pitta, Barbara Darjent, Amandine Bruneau), CHU Angers, Angers, France (Sigismond Lasocki, Maxime Leger, Soizic Gergaud, Pierre Lemarie), CHU Grenoble Alpes, Grenoble, France (Nicolas Terzi, Carole Schwebel, Anaïs Dartevel, Louis-Marie Galerneau), APHP—Hôpital Européen Georges Pompidou, Paris, France (Jean-Luc Diehl, Caroline Hauw-Berlemont, Nicolas Péron, Emmanuel Guérot), Hôpital Privé d'Antony, Antony, France (AbolfazlMohebbiAmoli, Michel Benhamou, Jean-Pierre Deyme, Olivier Andremont), Institut Arnault Tzanck,Saint Laurent du Var, France (Diane Lena, Julien Cady, Arnaud Causeret, Arnaud De La Chapelle); Centre Hospitalier d’ Angoulême, Angoulême, France (Christophe Cracco, Stéphane Rouleau, David Schnell); Centre Hospitalier de Cahors, Cahors, France (Camille Foucault), Centre hospitalier de Carcassonne, Carcassonne, France (Cécile Lory); CHU Nice—Hôpital L’Archet 2, Nice, France (Thibault Chapelle, Vincent Bruckert, Julie Garcia, Abdlazize Sahraoui); Hôpital Privé du Vert Galant, Tremblay-en-France, France (Nathalie Abbosh, Caroline Bornstain, Pierre Pernet); Centre Hospitalier de Rambouillet, Rambouillet, France (Florent Poirson, Ahmed Pasem, Philippe Karoubi); Hopitaux du Léman, Thonon les Bains, France (Virginie Poupinel, Caroline Gauthier, François Bouniol, Philippe Feuchere), Centre Hospitalier Victor Jousselin, Dreux, France (Florent Bavozet, Anne Heron), Hôpital Sainte Camille, Brie sur Marne, France (Serge Carreira, Malo Emery, Anne Sophie Le Floch, Luana Giovannangeli), Hôpital d’instruction des armées Clermont-Tonnerre, Brest, France (Nicolas Herzog, Christophe Giacardi, Thibaut Baudic, Chloé Thill), APHP—Hôpital Pitié Salpêtrière, Paris, France (Said Lebbah, Jessica Palmyre, Florence Tubach, David Hajage); APHP—Hôpital Avicenne, Bobigny, France (Nicolas Bonnet, Nathan Ebstein, Stéphane Gaudry, Yves Cohen); Groupement Hospitalier la Rochelle Ré Amis, La Rochelle, France (Julie Noublanche, Olivier Lesieur); Centre Hospitalier Intercommunal de Mont de Marsan et du Pays des Sources, Mont de Marsan, France (Arnaud Sément, Isabel Roca-Cerezo, Michel Pascal, Nesrine Sma); Centre Hospitalier Départemental de Vendée, La-Roche-Sur-Yon, France (Gwenhaël Colin, Jean-Claude Lacherade, Gauthier Bionz, Natacha Maquigneau); Pôle Anesthésie-Réanimation, CHU Grenoble (Pierre Bouzat, Michel Durand, Marie-Christine Hérault, Jean-Francois Payen).

Declarations

Human research ethics committee approval for the study was the ethical committee of the French Intensive Care Society (CE-SRLF 20-23) following our local regulations.
All patients or close relatives were informed that their data were included in the COVID-ICU cohort.

Competing interests

Dr Schmidt reported personal fees from Getinge, Drager, and Xenios, outside the submitted work. Dr Demoule reports personal fees from Medtronic, grants, personal fees and non-financial support from Philips, personal fees from Baxter, personal fees from Hamilton, personal fees and non-financial support from Fisher & Paykel, grants from French Ministry of Health, personal fees from Getinge, grants and personal fees from Respinor, grants and non-financial support from Lungpacer, outside the submitted work. Dr Dres reported personal fees from Lungpacer. No other disclosures were reported.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lim ZJ, Subramaniam A, Ponnapa Reddy M, et al. Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation. A meta-analysis. Am J Respir Crit Care Med. 2021;203:54–66.CrossRef Lim ZJ, Subramaniam A, Ponnapa Reddy M, et al. Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation. A meta-analysis. Am J Respir Crit Care Med. 2021;203:54–66.CrossRef
2.
Zurück zum Zitat Wang Y, Lu X, Li Y, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201:1430–4.CrossRef Wang Y, Lu X, Li Y, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201:1430–4.CrossRef
3.
Zurück zum Zitat Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–81.CrossRef Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–81.CrossRef
4.
Zurück zum Zitat Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10,021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med. 2020;8:853–62.CrossRef Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10,021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med. 2020;8:853–62.CrossRef
5.
Zurück zum Zitat Jiménez E, Fontán-Vela M, Valencia J, et al. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: a retrospective case series study. BMJ Open. 2020;10:e042398.CrossRef Jiménez E, Fontán-Vela M, Valencia J, et al. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: a retrospective case series study. BMJ Open. 2020;10:e042398.CrossRef
6.
Zurück zum Zitat Nijman G, Wientjes M, Ramjith J, et al. Risk factors for in-hospital mortality in laboratory-confirmed COVID-19 patients in the Netherlands: a competing risk survival analysis. PLoS ONE. 2021;16:e0249231.CrossRef Nijman G, Wientjes M, Ramjith J, et al. Risk factors for in-hospital mortality in laboratory-confirmed COVID-19 patients in the Netherlands: a competing risk survival analysis. PLoS ONE. 2021;16:e0249231.CrossRef
7.
Zurück zum Zitat Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180:1345–55.CrossRef Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180:1345–55.CrossRef
9.
Zurück zum Zitat Vallet H, Schwarz GL, Flaatten H, et al. Mortality of older patients admitted to an ICU: a systematic review. Crit Care Med. 2021;49:324–34.CrossRef Vallet H, Schwarz GL, Flaatten H, et al. Mortality of older patients admitted to an ICU: a systematic review. Crit Care Med. 2021;49:324–34.CrossRef
10.
Zurück zum Zitat Ma Y, Hou L, Yang X, et al. The association between frailty and severe disease among COVID-19 patients aged over 60 years in China: a prospective cohort study. BMC Med. 2020;18:274.CrossRef Ma Y, Hou L, Yang X, et al. The association between frailty and severe disease among COVID-19 patients aged over 60 years in China: a prospective cohort study. BMC Med. 2020;18:274.CrossRef
11.
Zurück zum Zitat Hewitt J, Carter B, Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020;5:e444–51.CrossRef Hewitt J, Carter B, Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020;5:e444–51.CrossRef
12.
Zurück zum Zitat Eachempati SR, Hydo LJ, Shou J, et al. Outcomes of acute respiratory distress syndrome (ARDS) in elderly patients. J Trauma. 2007;63:344–50.PubMed Eachempati SR, Hydo LJ, Shou J, et al. Outcomes of acute respiratory distress syndrome (ARDS) in elderly patients. J Trauma. 2007;63:344–50.PubMed
13.
Zurück zum Zitat Milberg JA, Davis DR, Steinberg KP, et al. Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA. 1995;273:306–9.CrossRef Milberg JA, Davis DR, Steinberg KP, et al. Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA. 1995;273:306–9.CrossRef
14.
Zurück zum Zitat Ferguson ND, Pham T, Gong MN. How severe COVID-19 infection is changing ARDS management. Intensive Care Med. 2020;46:2184–6.CrossRef Ferguson ND, Pham T, Gong MN. How severe COVID-19 infection is changing ARDS management. Intensive Care Med. 2020;46:2184–6.CrossRef
15.
Zurück zum Zitat COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.CrossRef COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.CrossRef
17.
Zurück zum Zitat Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef
18.
Zurück zum Zitat Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRef Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRef
19.
Zurück zum Zitat Juma S, Taabazuing M-M, Montero-Odasso M. Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay. Can Geriatr J. 2016;19:34–9.PubMedPubMedCentral Juma S, Taabazuing M-M, Montero-Odasso M. Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay. Can Geriatr J. 2016;19:34–9.PubMedPubMedCentral
20.
Zurück zum Zitat Grambsch P, Therneau T. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–26.CrossRef Grambsch P, Therneau T. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–26.CrossRef
21.
Zurück zum Zitat Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399–424.CrossRef Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399–424.CrossRef
22.
Zurück zum Zitat Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083–107.CrossRef Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083–107.CrossRef
23.
Zurück zum Zitat Kao K-C, Hsieh M-J, Lin S-W, et al. Survival predictors in elderly patients with acute respiratory distress syndrome: a prospective observational cohort study. Sci Rep. 2018;8:13459.CrossRef Kao K-C, Hsieh M-J, Lin S-W, et al. Survival predictors in elderly patients with acute respiratory distress syndrome: a prospective observational cohort study. Sci Rep. 2018;8:13459.CrossRef
24.
Zurück zum Zitat Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRef Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRef
25.
Zurück zum Zitat Flaatten H, De Lange DW, Morandi A, et al. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years). Intensive Care Med. 2017;43:1820–8.CrossRef Flaatten H, De Lange DW, Morandi A, et al. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years). Intensive Care Med. 2017;43:1820–8.CrossRef
26.
Zurück zum Zitat Guidet B, de Lange DW, Boumendil A, et al. The contribution of frailty, cognition, activity of daily life and comorbidities on outcome in acutely admitted patients over 80 years in European ICUs: the VIP2 study. Intensive Care Med. 2020;46:57–69.CrossRef Guidet B, de Lange DW, Boumendil A, et al. The contribution of frailty, cognition, activity of daily life and comorbidities on outcome in acutely admitted patients over 80 years in European ICUs: the VIP2 study. Intensive Care Med. 2020;46:57–69.CrossRef
27.
Zurück zum Zitat Dres M, Austin PC, Pham T, et al. Acute respiratory distress syndrome cases volume and ICU mortality in medical patients. Crit Care Med. 2018;46:e33–40.CrossRef Dres M, Austin PC, Pham T, et al. Acute respiratory distress syndrome cases volume and ICU mortality in medical patients. Crit Care Med. 2018;46:e33–40.CrossRef
28.
Zurück zum Zitat Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173:489–95.CrossRef Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173:489–95.CrossRef
29.
Zurück zum Zitat Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323:2052–9.CrossRef Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323:2052–9.CrossRef
30.
Zurück zum Zitat Azoulay É, Beloucif S, Guidet B, et al. Admission decisions to intensive care units in the context of the major COVID-19 outbreak: local guidance from the COVID-19 Paris-region area. Crit Care. 2020;24:293.CrossRef Azoulay É, Beloucif S, Guidet B, et al. Admission decisions to intensive care units in the context of the major COVID-19 outbreak: local guidance from the COVID-19 Paris-region area. Crit Care. 2020;24:293.CrossRef
31.
Zurück zum Zitat Shrime MG, Ferket BS, Scott DJ, et al. Time-limited trials of intensive care for critically ill patients with cancer: how long is long enough? JAMA Oncol. 2016;2:76–83.CrossRef Shrime MG, Ferket BS, Scott DJ, et al. Time-limited trials of intensive care for critically ill patients with cancer: how long is long enough? JAMA Oncol. 2016;2:76–83.CrossRef
32.
Zurück zum Zitat Dennis JM, McGovern AP, Vollmer SJ, et al. Improving survival of critical care patients with coronavirus disease 2019 in England: a national cohort study, March to June 2020. Crit Care Med. 2021;49:209–14.CrossRef Dennis JM, McGovern AP, Vollmer SJ, et al. Improving survival of critical care patients with coronavirus disease 2019 in England: a national cohort study, March to June 2020. Crit Care Med. 2021;49:209–14.CrossRef
33.
Zurück zum Zitat Demoule A, Vieillard Baron A, Darmon M, et al. High-flow nasal cannula in critically III patients with severe COVID-19. Am J Respir Crit Care Med. 2020;202:1039–42.CrossRef Demoule A, Vieillard Baron A, Darmon M, et al. High-flow nasal cannula in critically III patients with severe COVID-19. Am J Respir Crit Care Med. 2020;202:1039–42.CrossRef
34.
Zurück zum Zitat Barnato AE, Albert SM, Angus DC, et al. Disability among elderly survivors of mechanical ventilation. Am J Respir Crit Care Med. 2011;183:1037–42.CrossRef Barnato AE, Albert SM, Angus DC, et al. Disability among elderly survivors of mechanical ventilation. Am J Respir Crit Care Med. 2011;183:1037–42.CrossRef
35.
Zurück zum Zitat Unroe M, Kahn JM, Carson SS, et al. One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: a cohort study. Ann Intern Med. 2010;153:167–75.CrossRef Unroe M, Kahn JM, Carson SS, et al. One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: a cohort study. Ann Intern Med. 2010;153:167–75.CrossRef
36.
Zurück zum Zitat Horby P, Lim WS, Emberson J, et al. Dexamethasone in hospitalized patients with Covid-19. N ENgl J Med. 2021;384:693–704.CrossRef Horby P, Lim WS, Emberson J, et al. Dexamethasone in hospitalized patients with Covid-19. N ENgl J Med. 2021;384:693–704.CrossRef
37.
Zurück zum Zitat Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N Engl J Med. 2020;383:1813–26.CrossRef Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N Engl J Med. 2020;383:1813–26.CrossRef
Metadaten
Titel
Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study
Prognosis of COVID-19 elderly critically ill patients in the ICU
verfasst von
Martin Dres
David Hajage
Said Lebbah
Antoine Kimmoun
Tai Pham
Gaëtan Béduneau
Alain Combes
Alain Mercat
Bertrand Guidet
Alexandre Demoule
Matthieu Schmidt
the COVID-ICU investigators
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Schlagwort
COVID-19
Erschienen in
Annals of Intensive Care / Ausgabe 1/2021
Elektronische ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-021-00861-1

Weitere Artikel der Ausgabe 1/2021

Annals of Intensive Care 1/2021 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.