Skip to main content
Erschienen in: Pituitary 3/2020

06.01.2020 | Pituitary Adenoma

Machine learning applications in imaging analysis for patients with pituitary tumors: a review of the current literature and future directions

verfasst von: Ashirbani Saha, Samantha Tso, Jessica Rabski, Alireza Sadeghian, Michael D. Cusimano

Erschienen in: Pituitary | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To provide an overview of fundamental concepts in machine learning (ML), review the literature on ML applications in imaging analysis of pituitary tumors for the last 10 years, and highlight the future directions on potential applications of ML for pituitary tumor patients.

Method

We presented an overview of the fundamental concepts in ML, its various stages used in healthcare, and highlighted the key components typically present in an imaging-based tumor analysis pipeline. A search was conducted across four databases (PubMed, Ovid, Embase, and Google Scholar) to gather research articles from the past 10 years (2009-2019) involving imaging related to pituitary tumor and ML. We grouped the studies by imaging modalities and analyzed the ML tasks in terms of the data inputs, reference standards, methodologies, and limitations.

Results

Of the 16 studies included in our analysis, 10 appeared in 2018–2019. Most of the studies utilized retrospective data and followed a semi-automatic ML pipeline. The studies included use of magnetic resonance imaging (MRI), facial photographs, surgical microscopic video, spectrometry, and spectroscopy imaging. The objectives of the studies covered 14 distinct applications and majority of the studies addressed a binary classification problem. Only five of the 11 MRI-based studies had an external validation or a holdout set to test the performance of a final trained model.

Conclusion

Through our concise evaluation and comparison of the studies using the concepts presented, we highlight future directions so that potential ML applications using different imaging modalities can be developed to benefit the clinical care of pituitary tumor patients.
Literatur
1.
Zurück zum Zitat Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms. Cambridge University Press, CambridgeCrossRef Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13:55–75CrossRef Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13:55–75CrossRef
4.
Zurück zum Zitat Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V (2018) Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300:17–33CrossRef Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V (2018) Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300:17–33CrossRef
5.
Zurück zum Zitat Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Garcia-Rodriguez J (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41–65CrossRef Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Garcia-Rodriguez J (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41–65CrossRef
6.
Zurück zum Zitat Buczak AL, Guven E (2015) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18:1153–1176CrossRef Buczak AL, Guven E (2015) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18:1153–1176CrossRef
7.
Zurück zum Zitat Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, Malík P, Hluchý L (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124CrossRef Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, Malík P, Hluchý L (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124CrossRef
8.
Zurück zum Zitat Kim D-H, Kim TJY, Wang X, Kim M, Quan Y-J, Oh JW, Min S-H, Kim H, Bhandari B, Yang I (2018) Smart machining process using machine learning: a review and perspective on machining industry. Int J Precis Eng Manuf Technol 5:555–568CrossRef Kim D-H, Kim TJY, Wang X, Kim M, Quan Y-J, Oh JW, Min S-H, Kim H, Bhandari B, Yang I (2018) Smart machining process using machine learning: a review and perspective on machining industry. Int J Precis Eng Manuf Technol 5:555–568CrossRef
9.
Zurück zum Zitat Frutos-Pascual M, Zapirain BG (2015) Review of the use of AI techniques in serious games: decision making and machine learning. IEEE Trans Comput Intell AI Games 9:133–152CrossRef Frutos-Pascual M, Zapirain BG (2015) Review of the use of AI techniques in serious games: decision making and machine learning. IEEE Trans Comput Intell AI Games 9:133–152CrossRef
11.
Zurück zum Zitat Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157CrossRef Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157CrossRef
12.
Zurück zum Zitat Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25:24CrossRefPubMed Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25:24CrossRefPubMed
13.
Zurück zum Zitat Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879CrossRef Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879CrossRef
17.
Zurück zum Zitat Ko J, Swetter SM, Blau HM, Esteva A, Kuprel B, Novoa RA, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115CrossRefPubMedPubMedCentral Ko J, Swetter SM, Blau HM, Esteva A, Kuprel B, Novoa RA, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lake MG, Krook LS, Cruz SV (2013) Pituitary adenomas: an overview. Am Fam Physician 88:319–327PubMed Lake MG, Krook LS, Cruz SV (2013) Pituitary adenomas: an overview. Am Fam Physician 88:319–327PubMed
26.
Zurück zum Zitat Drummond JB, Ribeiro-Oliveira A, Soares BS (2000) Non-functioning pituitary adenomas. MDText.com Inc., South Dartmouth Drummond JB, Ribeiro-Oliveira A, Soares BS (2000) Non-functioning pituitary adenomas. MDText.com Inc., South Dartmouth
30.
Zurück zum Zitat Chen CC, Carter BS, Wang R, Patel KS, Hess C, Bodach ME, Tumialan LM, Oyesiku NM, Patil CG, Litvack Z, Zada G, Aghi MK (2016) Congress of neurological surgeons systematic review and evidence-based guideline on preoperative imaging assessment of patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E524–E526. https://doi.org/10.1227/NEU.0000000000001391 CrossRefPubMed Chen CC, Carter BS, Wang R, Patel KS, Hess C, Bodach ME, Tumialan LM, Oyesiku NM, Patil CG, Litvack Z, Zada G, Aghi MK (2016) Congress of neurological surgeons systematic review and evidence-based guideline on preoperative imaging assessment of patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E524–E526. https://​doi.​org/​10.​1227/​NEU.​0000000000001391​ CrossRefPubMed
34.
Zurück zum Zitat Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol 10:423CrossRefPubMed Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol 10:423CrossRefPubMed
38.
Zurück zum Zitat Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv1711.05225. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv1711.05225.
39.
Zurück zum Zitat Shickel B, Tighe PJ, Bihorac A, Rashidi P (2017) Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inf 22:1589–1604CrossRef Shickel B, Tighe PJ, Bihorac A, Rashidi P (2017) Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inf 22:1589–1604CrossRef
40.
Zurück zum Zitat Pellegrini E, Ballerini L, Hernandez M, del Chappell CV, González-Castro FM, Anblagan V, Danso D, Muñoz-Maniega S, Job S, Pernet D, Mair C, MacGillivray G, Trucco TJ, Wardlaw E (2018) Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer Dement Diagn Assess Dis Monit 10:519–535. https://doi.org/10.1016/j.dadm.2018.07.004 CrossRef Pellegrini E, Ballerini L, Hernandez M, del Chappell CV, González-Castro FM, Anblagan V, Danso D, Muñoz-Maniega S, Job S, Pernet D, Mair C, MacGillivray G, Trucco TJ, Wardlaw E (2018) Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer Dement Diagn Assess Dis Monit 10:519–535. https://​doi.​org/​10.​1016/​j.​dadm.​2018.​07.​004 CrossRef
43.
Zurück zum Zitat Zeynalova A, Kocak B, Durmaz ES, Comunoglu N, Ozcan K, Ozcan G, Turk O, Tanriover N, Kocer N, Kizilkilic O, Islak C (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 61(7):767–774. https://doi.org/10.1007/s00234-019-02211-2 CrossRefPubMed Zeynalova A, Kocak B, Durmaz ES, Comunoglu N, Ozcan K, Ozcan G, Turk O, Tanriover N, Kocer N, Kizilkilic O, Islak C (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 61(7):767–774. https://​doi.​org/​10.​1007/​s00234-019-02211-2 CrossRefPubMed
47.
Zurück zum Zitat Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O (2019) Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol 29:2731–2739. https://doi.org/10.1007/s00330-018-5876-2 CrossRefPubMed Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O (2019) Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol 29:2731–2739. https://​doi.​org/​10.​1007/​s00330-018-5876-2 CrossRefPubMed
48.
Zurück zum Zitat Liu Y, Liu X, Hong X, Liu P, Bao X, Yao Y, Xing B, Li Y, Huang Y, Zhu H, Lu L, Wang R, Feng M (2019) Prediction of recurrence after transsphenoidal surgery for Cushing’s disease: the use of machine learning algorithms. Neuroendocrinology 108:201–210. https://doi.org/10.1159/000496753 CrossRefPubMed Liu Y, Liu X, Hong X, Liu P, Bao X, Yao Y, Xing B, Li Y, Huang Y, Zhu H, Lu L, Wang R, Feng M (2019) Prediction of recurrence after transsphenoidal surgery for Cushing’s disease: the use of machine learning algorithms. Neuroendocrinology 108:201–210. https://​doi.​org/​10.​1159/​000496753 CrossRefPubMed
55.
58.
Zurück zum Zitat Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases recognition in pituitary surgeries by microscope images classification. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 34–44 Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases recognition in pituitary surgeries by microscope images classification. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 34–44
59.
Zurück zum Zitat Steiner G, Mackenroth L, Geiger KD, Stelling A, Pinzer T, Uckermann O, Sablinskas V, Schackert G, Koch E, Kirsch M (2012) Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging. Anal Bioanal Chem 403:727–735CrossRefPubMed Steiner G, Mackenroth L, Geiger KD, Stelling A, Pinzer T, Uckermann O, Sablinskas V, Schackert G, Koch E, Kirsch M (2012) Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging. Anal Bioanal Chem 403:727–735CrossRefPubMed
63.
Zurück zum Zitat Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, Roesch J, Rudofsky L, Friess M, Veit-Haibach P, Huellner M, Opitz I, Weder W, Frauenfelder T, Guckenberger M, Tanadini-Lang S (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074. https://doi.org/10.1080/0284186X.2018.1445283 CrossRefPubMed Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, Roesch J, Rudofsky L, Friess M, Veit-Haibach P, Huellner M, Opitz I, Weder W, Frauenfelder T, Guckenberger M, Tanadini-Lang S (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074. https://​doi.​org/​10.​1080/​0284186X.​2018.​1445283 CrossRefPubMed
68.
Zurück zum Zitat Van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ (2014) Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10:102CrossRefPubMed Van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ (2014) Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10:102CrossRefPubMed
75.
Zurück zum Zitat Buchfelder M, Schlaffer S-M (2016) Intraoperative magnetic resonance imaging for pituitary adenomas. In: Frontiers of hormone research. Karger Publishers, Berlin, pp 121–132 Buchfelder M, Schlaffer S-M (2016) Intraoperative magnetic resonance imaging for pituitary adenomas. In: Frontiers of hormone research. Karger Publishers, Berlin, pp 121–132
78.
Zurück zum Zitat Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRefPubMed Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRefPubMed
84.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
85.
Zurück zum Zitat Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft COCO: common objects in context. Springer, New York Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft COCO: common objects in context. Springer, New York
Metadaten
Titel
Machine learning applications in imaging analysis for patients with pituitary tumors: a review of the current literature and future directions
verfasst von
Ashirbani Saha
Samantha Tso
Jessica Rabski
Alireza Sadeghian
Michael D. Cusimano
Publikationsdatum
06.01.2020
Verlag
Springer US
Erschienen in
Pituitary / Ausgabe 3/2020
Print ISSN: 1386-341X
Elektronische ISSN: 1573-7403
DOI
https://doi.org/10.1007/s11102-019-01026-x

Weitere Artikel der Ausgabe 3/2020

Pituitary 3/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.