Skip to main content
main-content
Erschienen in: InFo Hämatologie + Onkologie 4/2022

12.04.2022 | Schilddrüsenkarzinome | Schwerpunkt

Schwerpunkt "Theranostik"

Natrium-Jodid-Symporter-gerichtete Theranostik

verfasst von: M. Sc. Dr. med. David Kersting

Erschienen in: InFo Hämatologie + Onkologie | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Auszug

Die Nutzung von Jod-Isotopen für die Bildgebung und Therapie kann als eine der ältesten theranostischen Anwendungsformen gelten. Hauptindikationen für die Radiojodbildgebung und -therapie sind Schilddrüsenerkrankungen wie das Schilddrüsenkarzinom. Welche Isotope und Techniken derzeit im onkologischen Kontext zum Einsatz kommen - und welche zukünftigen Entwicklungen zu erwarten sind -, lesen Sie in dieser Übersicht.
Literatur
1.
Zurück zum Zitat Marx K et al. Cell death induced by 131 I in a differentiated thyroid carcinoma cell line in vitro: necrosis or apoptosis? Nucl Med Commun. 2006;27(4):353-8 Marx K et al. Cell death induced by 131 I in a differentiated thyroid carcinoma cell line in vitro: necrosis or apoptosis? Nucl Med Commun. 2006;27(4):353-8
2.
Zurück zum Zitat Wyszomirska A. Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur. 2012;15(2):120-3 Wyszomirska A. Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur. 2012;15(2):120-3
3.
Zurück zum Zitat Silberstein EB. Radioiodine: the classic theranostic agent. Semin Nucl Med. 2012;42(3):164-70 Silberstein EB. Radioiodine: the classic theranostic agent. Semin Nucl Med. 2012;42(3):164-70
4.
Zurück zum Zitat Park HM. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 2002;43(1):77-8 Park HM. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 2002;43(1):77-8
5.
Zurück zum Zitat Van Nostrand D et al. (124)I positron emission tomografy versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879-83 Van Nostrand D et al. (124)I positron emission tomografy versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879-83
6.
Zurück zum Zitat Nagarajah J et al. Iodine Symporter Targeting with (124)I/(131)I Theranostics. J Nucl Med. 2017;58(Suppl 2):34S-38S Nagarajah J et al. Iodine Symporter Targeting with (124)I/(131)I Theranostics. J Nucl Med. 2017;58(Suppl 2):34S-38S
7.
Zurück zum Zitat Jentzen W et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017-23 Jentzen W et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017-23
8.
Zurück zum Zitat Haugen BR et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133 Haugen BR et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133
9.
Zurück zum Zitat Luster M et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941-59 Luster M et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941-59
10.
Zurück zum Zitat Dietlein M et al. [Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Version 4]. Nuklearmedizin. 2016;55(3):77-89 Dietlein M et al. [Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Version 4]. Nuklearmedizin. 2016;55(3):77-89
11.
Zurück zum Zitat Van Nostrand D. Radioiodine Imaging for Differentiated Thyroid Cancer: Not All Radioiodine Images Are Performed Equally. Thyroid. 2019;29(7):901-9 Van Nostrand D. Radioiodine Imaging for Differentiated Thyroid Cancer: Not All Radioiodine Images Are Performed Equally. Thyroid. 2019;29(7):901-9
12.
Zurück zum Zitat Chen MK et al. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid. 2012;22(3):304-9 Chen MK et al. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid. 2012;22(3):304-9
13.
Zurück zum Zitat Silberstein EB. Comparison of outcomes after (123)I versus (131)I pre-ablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J Nucl Med. 2007;48(7):1043-46 Silberstein EB. Comparison of outcomes after (123)I versus (131)I pre-ablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J Nucl Med. 2007;48(7):1043-46
14.
Zurück zum Zitat Binse I et al. Imaging with (124)I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? Eur J Nucl Med Mol Imaging. 2016;43:(6)1011-7 Binse I et al. Imaging with (124)I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? Eur J Nucl Med Mol Imaging. 2016;43:(6)1011-7
15.
Zurück zum Zitat Phan HT et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958-65 Phan HT et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958-65
16.
Zurück zum Zitat Jentzen W et al. Pre-therapeutic (124)I PET(/CT) dosimetry confirms low average absorbed doses per administered (131)I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(5):884-95 Jentzen W et al. Pre-therapeutic (124)I PET(/CT) dosimetry confirms low average absorbed doses per administered (131)I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(5):884-95
17.
Zurück zum Zitat Jentzen W et al. Lowest effective 131I activity for thyroid remnant ablation of differentiated thyroid cancer patients. Dosimetry-based model for estimation. Nuklearmedizin. 2015;54(3):137-43 Jentzen W et al. Lowest effective 131I activity for thyroid remnant ablation of differentiated thyroid cancer patients. Dosimetry-based model for estimation. Nuklearmedizin. 2015;54(3):137-43
18.
Zurück zum Zitat Nagarajah J et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38(20):1862-8 Nagarajah J et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38(20):1862-8
19.
Zurück zum Zitat Weber M et al. The role of 124I PET/CT lesion dosimetry in differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2019;63(3):235-52 Weber M et al. The role of 124I PET/CT lesion dosimetry in differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2019;63(3):235-52
20.
Zurück zum Zitat Keston AS et al. Storage of Radioactive Iodine in a Metastasis from Thyroid Carcinoma. Science. 1942;95(2466):362-3 Keston AS et al. Storage of Radioactive Iodine in a Metastasis from Thyroid Carcinoma. Science. 1942;95(2466):362-3
21.
Zurück zum Zitat Sawka AM et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69(3):479-90 Sawka AM et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69(3):479-90
22.
Zurück zum Zitat Dietlein M et al. [Radioiodine therapy for benign thyroid diseases (version 5). German Guideline]. Nuklearmedizin. 2016;55(6):213-20 Dietlein M et al. [Radioiodine therapy for benign thyroid diseases (version 5). German Guideline]. Nuklearmedizin. 2016;55(6):213-20
23.
Zurück zum Zitat Fard-Esfahani A et al. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun. 2014;35(8):808-17 Fard-Esfahani A et al. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun. 2014;35(8):808-17
24.
Zurück zum Zitat Schlumberger M et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663-73 Schlumberger M et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663-73
25.
Zurück zum Zitat Mallick U et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366(18):1674-85 Mallick U et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366(18):1674-85
26.
Zurück zum Zitat Leboulleux S et al. Thyroidectomy without Radioiodine in Patients with Low-Risk Thyroid Cancer. N Engl J Med. 2022;386(10):923-32 Leboulleux S et al. Thyroidectomy without Radioiodine in Patients with Low-Risk Thyroid Cancer. N Engl J Med. 2022;386(10):923-32
27.
Zurück zum Zitat Ho AL et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623-32 Ho AL et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623-32
Metadaten
Titel
Schwerpunkt "Theranostik"
Natrium-Jodid-Symporter-gerichtete Theranostik
verfasst von
M. Sc. Dr. med. David Kersting
Publikationsdatum
12.04.2022
Verlag
Springer Medizin
Erschienen in
InFo Hämatologie + Onkologie / Ausgabe 4/2022
Print ISSN: 2662-1754
Elektronische ISSN: 2662-1762
DOI
https://doi.org/10.1007/s15004-022-9014-6

Weitere Artikel der Ausgabe 4/2022

InFo Hämatologie + Onkologie 4/2022 Zur Ausgabe

Passend zum Thema

Screen Laserbootcamp
ANZEIGE

26.01.2022 | Online-Artikel

Experten-Talk „Bepanthen® Laserbootcamp – Grundlagen, Anwendung, Stellenwert"

Beim „Bepanthen® Laserbootcamp“ beleuchten drei Dermatologie-Experten die Grundlagen der Lasertherapie in der Praxis, neueste Forschungsergebnisse und geben einen Ausblick auf die neue Leitlinie „Lasertherapie der Haut“. 

DDG Tagung Virtuell
ANZEIGE

24.05.2021 | Online-Artikel

Laser- und Strahlentherapie: Mit Dexpanthenol nachbehandeln

Laser- und Strahlentherapien können Haut- und Schleimhautschäden verursachen und entzündliche Prozesse auslösen. Die von Prof. Dr. Gerber, Düsseldorf, und Prof. Dr. Baron, Aachen, auf der 51. DDG-Jahrestagung präsentierten aktuellen Daten zeigen, dass Dexpanthenol-haltige Topika (z.B. Bepanthen® Wund- und Heilsalbe) den Heilungsprozess und die Regeneration der geschädigten Haut bzw. Schleimhaut beschleunigen.

ANZEIGE

Bepanthen® unterstützt bei vielen Indikationen die Regeneration der Haut

Bepanthen® Wund- und Heilsalbe wird heute wie bei der Einführung vor 70 Jahren erfolgreich bei kleinen Alltagsverletzungen eingesetzt. Moderne Forschung – Untersuchungen an Hautmodellen, Genexpressionsanalysen und klinische Studien – schafft darüber hinaus Evidenz für neue Anwendungsgebiete. So kann die Dexpanthenol-haltige Salbe heute z.B. zur Nachbehandlung einer Lasertherapie bei aktinischer Keratose oder Tattoo-Entfernung eingesetzt werden. Erfahren Sie hier mehr über moderne Forschung zu Bepanthen.