Skip to main content
Erschienen in: International Journal of Legal Medicine 4/2021

Open Access 12.05.2021 | Case Report

Forensic investigative issues in a fireworks production factory explosion

verfasst von: Gennaro Baldino, Chiara Stassi, Cristina Mondello, Antonio Bottari, Stefano Vanin, Elvira Ventura Spagnolo

Erschienen in: International Journal of Legal Medicine | Ausgabe 4/2021

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Since their discovery in ancient China, fireworks rapidly spread throughout the world, where they have always been used to celebrate either popular or private events. Their use is nonetheless related to several risks, especially within production factories, since several injuries or even death can occur following an accidental ignition. In cases of major disasters related to fireworks explosions, stating the accidental or intentional nature of the event might prove challenging, thus raising the need of a multidisciplinary approach. In this regard, we here discuss the case of an accidental explosion that occurred in a fireworks production factory, accountable for five deaths and two hospitalisations.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Fireworks are explosive items containing a mixture of chemicals—mainly potassium nitrate, pulverised charcoal and sulphur—whose ignition generates spectacular and colourful light and sound effects. Casually born in China while managing several substances in an attempt to obtain the elixir of long life, fireworks soon spread throughout the world where they were used to celebrate either private, popular, cultural or religious events [17].
Their use is not, however, risk-free: When fireworks are improperly managed, the following explosion can cause severe injuries or, not infrequently, lead to death. For this reason, several national and European laws and guidelines have been issued over the years, in order to regulate both the sale and the handling of pyrotechnic artifices [4, 5, 811].
For the variability of the lesions found, explosion-related injuries are usually referred to as “compound injuries”: The blast wave effect on the body is responsible for contusions, lacerations, fractures, amputations, multi-organ damages; other injuries, resulting from direct and/or indirect mechanisms, include burns due to high temperatures, inhalation injury due to the toxic and hot gases released and injuries ascribed to the collapse on the body of the structures where the explosion occurs [24, 8, 9, 1215].
According to literature, explosion-related deaths are not uncommon events, and are most frequently associated with terrorist or military activities; in this context, fireworks-related deaths account for just a few of all cases, being usually ascribed to suicidal attempts or accidents related to their production or use for fun and entertainment [4, 9, 1419].
We here report the case of an accidental explosion of a fireworks production factory involving seven people, five of which died while the other two were hospitalised for serious wounds and internal injuries. Since from a preliminary judicial investigation a doubt arose on the accidental or intentional nature of the event due to recent contrasts between an employee hired without a regular contract and the factory’s owner, a multidisciplinary expertise has been requested in order to (1) evaluate the compatibility between the explosive event and the lesions observed on the victims and (2) shed light on the event’s dynamic.

Case description

In November 2019, seven people were involved in a violent explosion that occurred within a fireworks factory: five of them were workers engaged in the installation of sliding gates to the factory buildings according to the latest safety regulations; the other two were administrative employees. The factory consisted of a total of 16 buildings: Buildings number 6 and 7 were completely destroyed by the explosion, and building number 8 also caught fire (Figs. 1 and 2); all the other buildings were affected by minor damages due to the deflagration-related blast wave—whose extent was proportional to the distance from the epicentre. Three workers and an employee died immediately: The corpses of two of the three workers—subjects 1 and 2—were found nearby the buildings number 6 and 7; several body parts of the third worker (subject 3) were spread not only in the area surrounding the same buildings, but also in the surroundings of building number 8 and beyond (Figs. 1a and 2); the employee’s corpse—subject 4—was found quite completely charred in proximity of building number 8 (Table 1). A fourth worker—subject 5—died while transported in severe conditions to the nearest hospital, while the second employee and the last worker—subjects 6 and 7—were transported to the hospital reporting major burns, minor fractures and other minor lesions and, once undergone adequate care, were discharged.
Table 1
Main circumstantial information, laboratory and toxicological findings in the five dead victims to evaluate the cause of death
Subject
Sex
Age
Position at the disaster site
External examination
DNA profile matrix
HbCO%
Cause of death
1
M
36
Nearby buildings no. 6 and 7
Smashed scalp; burns, bruises and abrasions all over the body surface
-
8.2%
Explosion-related
2
M
23
Nearby buildings no. 6 and 7
Head, neck and abdomen lacerations; burns, bruises and charred areas on the limbs
-
5.3%
Explosion-related
3
M (confirmed by DNA profiling)
34
Remains spread in proximity of buildings no. 6, 7 and 8
Dismembered body
Bone and muscle remains
-
Explosion-related
4
F
71
Nearby building no. 8
Almost completely charred; burns and lacerations of the head
-
8.2%
Explosion-related; charring
5
M
39
Dead while transported to the hospital
Burns and lacerations all over the body; exposed right tibial fracture
-
4.3%
Explosion-related
Prior to autopsies, 3D CT scans were performed in subjects 1, 2, 4 and 5 both for a better understanding of the internal lesions and to detect the eventual presence of retained foreign bodies and/or unexploded ordnances (Figs. 3a and 4a). Widespread fractures were present in each case, and wide lacerations of the abdominal wall were observed in subject 2, while the presence of several foreign bodies was detected in subjects 1, 2 and 4. Specifically, concrete foreign bodies released by the exploded buildings were detected in the right ribcage of subject 1 (Fig. 3a), in the left temporo-parietal bone, in the anterior abdominal wall and in the subcutaneous planes of almost all districts of subject 2 (Fig. 4a); a plastic foreign body was detected in the left parietal bone of subject 4 (Table 2).
Table 2
Main 3D CT, external inspection, main cadaveric inspection and histological findings
 
Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
3D CT
- Cr and Mf – Frac
- Rc Frac
- FB in the Rc
- UL – Frac
- LL – Frac
- Vc – Frac (D4)
- Cr Frac, FB retained in the cerebral parenchyma
- Rc and LL Frac
- Lac and FB in the AR
- Small FBs in all districts
-
- Cr and Mf Frac
- Rc Frac
- Vc Frac (L2-L4-L5)
- LL Frac
- Cr Frac
- Rc Frac
- UL Frac
- LL Frac
External inspection
- BSD
- DB and Ab
- Smashed scalp with brain residues split outside
- Extruded right eye bulb
- Lost anatomical facial profile
- BSD
- Cr Frac and FB;
- H in the temporo-parietal areas
- Lac of the left latero-cervical region
- Lac in the AR
- B and Ab in LL
- B in UL
- Ch LL
- Cr Frag
- Mandibular bone with 2 dental elements
- Mf Frag
- Rc Frag
- Vc Frag
- UL Frag
- LL Frag
- Small Frag of muscular tissue
- P parenchyma Frag
- Diffuse Ch;
- Fighter attitude;
- Burnt hair;
- Mf Dis;
- Cr Lac and H;
- Small plastic object, roughly round-shaped, moulded within the parietal bone
- BSD;
- LoS helix and anti-helix;
- Mf B and Dis;
- B throughout the body;
- Cr Lac and B;
- Mf, UL and LL Ab and grazes;
- Lac and Frac LL
Cadaveric inspection
- Rupture of the right ventricle anterior wall
- Multiple lac of lungs, liver and spleen
- Multiple subcutaneous and muscle HI
- Sub-pleural E
- Rc HI
- Sub-epicardial HI
- Residues of yellowish, pulpy, material in the oesophagus
-
- Cr HI
- LoS left parietal hemisphere
- Rotated mandibular arch
- Rc HI
- Pleural adhesions
- Vy
- Black-smoky dirt was found in the oral cavity and airways
- Cr HI
- Pleural effusion
- P parenchymal thickening
Histological findings
- Cerebral Oe
- Er of glottis and trachea tunica propria and submucosa
- P Co and Oe
- P H and PE
- Right ventricle subepicardial H
- Cardiac Mif with focal contracture bands
- Nec of the proximal renal cortical convolutes
- Diffuse subarachnoid H
- Neuronal Oe
- P S and Oe
- Focal DA
- MH
- Splenic Hyp
- Acute tubular Nec of renal cortex
- Hyperkeratotic seborrheic keratosis upon removal of the foot skin
- H Oe and DA, with siderocytes in its context
- Subarachnoid H
- Neuronal Oe
- Brain stem acute S
- MH associated with replacement, perivascular fibrosis and fibromuscular dysplasia of the small intramural coronary vessels
- Slight Er of glottis and trachea tunica propria and submucosa
- PE
- Steatosis
- Tubular Nec of the renal cortex
- Acute brain S and brain stem H
- MH and Mif
- P—H and Oe with DA
- FE
- Muciparous metaplasia of the bronchial epithelium
- Spinal micro-embolism
- Acute liver S with small outbreaks of turbid pathosis
- Acute tubular Nec of the renal cortex and acute medullary S
Ab = Abrasions; AR = Abdominal region; B = Burns; BSD= Body surface dirty, with debris, combustion particles and foliage; Co = Congestion; Ch = Charring; Cr = Cranial; DA = Desquamative alveolitis; DB = Diffuse burns; Dis = De-epithelialization; E= Ecchymoses; Er = Erosion; FB = Foreign bodies; FE= Focal emphysema; Frac = Fractures; Frag = Fragments; H= Haemorrhage; Hyp = Hyperplasia; I= Infiltration; HI = Haemorragic infiltration; Lac = Lacerations; LL= lower limbs; LoS = loss of substance; Mif = Myofibrillolysis; Mf = Maxillo-facial; MH = Myocytes hypertrophy; Nec = Necrosis; Oe = Oedema; P = Pulmunary; PE= Pan-lobular emphysema; Rc = Rib cage; S = Stasis; UL = Upper limbs; Vc = Vertebral column; Vy = Ventricular concentric hypertrophy
Autopsies were performed 24 h after death in subjects 1, 2, 3 and 4, and 48 h after death in subject 5, who died while transported to the hospital; forensic investigations were completed by histopathology and toxicological assays. Upon external inspection, all the victims’ bodies and remains appeared dirty, with debris, combustion particles and foliage. Widespread lacerations, abrasions, burns from II to III degree and charred areas were detected on all subjects (Figs. 2c and d, 3b and c4b and c); as for subject 4, it was found almost completely charred, in a fighter attitude, with burnt hair and large areas of de-epithelialization on the face. Subjects 1 and 3 presented cranial smash. A broken, exposed, right tibial fracture was also detected on subject 4. A detailed list of the autopsy and histological findings is provided in Table 2.
On both cadaveric inspection and histopathology, unspecific signs were observed, mainly consisting on haemorrhagic infiltrations and congestion of several organs; multiple lacerations of the lungs, liver and spleen were detected in subject 1, while just few bone and tissue remains were detected and collected in subject 3. Being the body of subject 3 completely dismembered, and thus unrecognisable, subsequent genetic investigations were carried out on its remains, making it possible to trace the identity of the victim, which matched that of one of the five workers. The toxicological analyses on peripheral blood samples belonged from subjects 1, 2, 4 and 5 were performed revealing low levels of carboxy-haemoglobin (< 10%). All specimens resulted negative for alcohol and drugs.

Discussion

Fireworks are a type of explosives which act by generating, upon ignition, a compression of the surrounding air, whose particles accelerate and heat, thus provoking an increase in the atmospheric pressure and temperature—the so-called blast wave—responsible for severe injuries [9, 16].
A possible explanation of the increasing trend of fireworks-related injuries lies in an easier accessibility due to the commercialization of the so-called class C fireworks, which are usually thought to be safe [8]. Very few cases are described in literature reporting their use for suicidal attempts, mainly by insertion inside the oral cavity, with subsequent death and disfigurement of the craniofacial structures [14, 17, 20]. Much more frequent are fireworks-related accidents, which recognise as main causes improper use by untrained people, handling in absence of adequate safety precautions within production factories or management-independent accidents. When the energy released by the explosion is high, the blast wave effects can be devastating both in terms of morbidity and mortality. This situation is more likely to occur in a working context, most frequently within confined spaces [1, 2, 5, 6, 14, 16, 18, 19].
On the whole, explosion-related injuries can be classified into four categories: Primary injuries are those related to the blast wave effect, leading to a major damage of gas-filled organs and air-fluid interfaces (e.g. lungs, gastrointestinal tract, internal ear); secondary injuries are those related to the penetrative effect of primary and secondary fragments released after the explosion; tertiary injuries are related both to the impact of the body, when displaced by the blast wave, towards surrounding structures, and/or to the collapse of the structure on the body (e.g. blunt injuries, concussions, crush syndromes); quaternary injuries are related to indirect damage mechanisms, including toxic gas inhalation, burns and environmental contamination [9, 12, 16, 21].
The post mortem, histological and toxicological investigations carried out on the five dead workers allowed us to detect all four classes of explosion-related injuries. Lung injuries considered blast-related included acute haemorrhagic oedema (subjects 1, 3 and 5), pan-lobular (subjects 1 and 4) and focal (subject 5) acute emphysema and acute broncho-acinar haemorrhage in subject 4 (Table 2). A bilateral tympanic perforation, another blast-related injury, was detected in subject 6, one of the two survivors. Some of our findings are also in agreement with Romolo et al. statements [12] according to which, although the homogeneous density of solid organs usually protects them from the action of the blast wave, when the blast load is high and the explosion is very close to the body, solid organs can suffer injuries as well (e.g. lacerations, ruptures). In this case, liver and spleen lacerations were detected in subject 1, while every organ of the body was destroyed in subject 3, of which only a few body remains were found. In each case, the inhalation injury was excluded given the low levels of carboxy-haemoglobin found in the victims’ blood samples (reference values < 10%) and the absence of soot in the airways, except for subject 5—the one who died while transported to the hospital—where just few traces of soot were found in the oral cavity and upper airways [22]. No alcohol or drugs were detected in any blood sample.
Subject 3 is a typical example of the fact that, under the effect of the explosive phenomenon, human bodies can get completely dismembered, thus raising a critical problem: the correct identification of the subject. In such a context, a combined application of different techniques (DNA fingerprinting, comparison of dental structures) becomes of utmost importance [23, 24]. While the identification of four of the five victims was relatively easy due to the recognition of maintained physical features and/or worn objects (necklaces, bracelets, etc.), the identification of subject 3 revealed challenging, since he was totally dismembered: The subsequent DNA profiling of the remains, once collected, allowed their attribution to a same individual, while the comparison to the DNA profiles of both parents made it possible to match the identity of the victim with that of one of the men working at the factory, a 34-year subject.
An equally important issue in cases of major explosions relates to the differentiation between an accidental and an intentional event. Even if, based on preliminary investigations, in the present case any element suggested that the explosion could be intentionally caused by third parties, a fire investigative unit survey was requested in order to elucidate the dynamics of the explosion and evaluate the presence of a compatibility with the circumstantial data provided by the judicial authority, the positions of the bodies at the site of discovery and the lesions found.
According to the report produced by the engineers of the fire investigative unit, a first explosion occurred at building number 7—used as deposit for fireworks dyes—where four workers were engaged in activities aimed at the installation of a sliding gate. During the survey on the remains of the building, which was otherwise destroyed, an extension cable still connected to the power cubicle was found departing from the ejected superior beam. On the same beam, several squared iron supports—used to weld the metal guide where the gate would slide—were found applied by means of a chemical anchor; welding signs were detected on one of the iron supports, thus confirming the ongoing gate installation. Given the absence of electricity in building number 7, the electric cause was excluded. Instead, it has been postulated that the deflagration would be consequence of the production of welding sparks in an area with combustible-oxidising atmosphere; the ignited atmosphere would thus act as a fuse for a domino effect which involved several buildings of the factory: The mainly affected were buildings number 6 and 8 (used, respectively, as fireworks deposit and fireworks production station) which, being very close to building number 7, were completely destroyed as well; Specifically, building number 6 exploded, while building number 8 also caught fire.
Such a reconstruction is in accordance with the forensic surveys: The cadavers of subjects 1 and 2—who were referred to be working nearby buildings number 6 and 7—and the remains of subject 3—who was referred to be engaged in the welding activity at building number 7—were found in the surroundings of buildings number 6 and 7; subject 5, who died while transported to the hospital, was referred to be working for the gate installation nearby buildings number 6 and 7 as well; at last, the discovery of the charred cadaver of subject 4 close to building number 8 (where she was referred heading towards as the explosion occurred) is in accordance with the fact that the structure caught fire. In light of the present reconstruction, confirmed the absence of any element suggesting that the explosion could be intentional, and excluded causes of death different from an explosion-related one, the accidental nature of the event was thus validated.
As well as in the present case, particular contexts exist in which the forensic investigations show some limits; for this reason, the achievement of a correct and precise reconstruction of the dynamics of certain events cannot be achieved without a multidisciplinary approach in which different professional profiles, as well as a thorough analysis of the circumstantial data, are requested [2426].

Declarations

Ethics approval

Not applicable.
Not applicable. This is a post mortem case report. Anyhow, the data of the case were provided respecting the privacy law, respecting the anonymity of the subjects.

Conflict of interest

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Udesen A, Ovesen O.C (1991) Burn injuries due to fireworks during new year holiday. A 10-year case load. Ugeskr Laeger 153(16):1131–1132 Udesen A, Ovesen O.C (1991) Burn injuries due to fireworks during new year holiday. A 10-year case load. Ugeskr Laeger 153(16):1131–1132
2.
Zurück zum Zitat Chen XL, Wang YJ, Wang CR, Hu DL, Sun YX, Li SS (2002) Burns due to gunpowder explosions in fireworks factory: a 13-year retrospective study. Burns 28:245–249CrossRef Chen XL, Wang YJ, Wang CR, Hu DL, Sun YX, Li SS (2002) Burns due to gunpowder explosions in fireworks factory: a 13-year retrospective study. Burns 28:245–249CrossRef
3.
Zurück zum Zitat Chen XL, Wang YJ, Wang CR, Li SS (2002) Gunpowder explosion burns in fireworks factory: causes of death and management. Burns 28:655–658CrossRef Chen XL, Wang YJ, Wang CR, Li SS (2002) Gunpowder explosion burns in fireworks factory: causes of death and management. Burns 28:655–658CrossRef
4.
Zurück zum Zitat Harding BA, Wolf BC (2007) Independence Day Explosion on Lovers Key. J Forensic Sci 52(5):1186–1189CrossRef Harding BA, Wolf BC (2007) Independence Day Explosion on Lovers Key. J Forensic Sci 52(5):1186–1189CrossRef
5.
Zurück zum Zitat Tandon R, Agrawal K, Narayan RP, Tiwari VK, Prakash V, Kumar S, Sharma S (2012) Firecracker injuries during diwali festival: the epidemiology and impact of legislation in Delhi. Indian J Plast Surg 45(1):97–101 Tandon R, Agrawal K, Narayan RP, Tiwari VK, Prakash V, Kumar S, Sharma S (2012) Firecracker injuries during diwali festival: the epidemiology and impact of legislation in Delhi. Indian J Plast Surg 45(1):97–101
6.
Zurück zum Zitat Vaghardoost R, Ghavami Y, Sobouti B, Mobayen MR (2013) Mortality and morbidity of fireworks-related burns on the annual last Wednesday of the year festival (CharshanbehSoori) in Iran: an 11-year study. Trauma Mon 18(2):81–85CrossRef Vaghardoost R, Ghavami Y, Sobouti B, Mobayen MR (2013) Mortality and morbidity of fireworks-related burns on the annual last Wednesday of the year festival (CharshanbehSoori) in Iran: an 11-year study. Trauma Mon 18(2):81–85CrossRef
7.
Zurück zum Zitat Rudisill TM, Preamble K, Pilkerton C (2020) The liberalization of fireworks legislation and its effects on firework-related injuries in West Virginia. BMC Public Health 20:137CrossRef Rudisill TM, Preamble K, Pilkerton C (2020) The liberalization of fireworks legislation and its effects on firework-related injuries in West Virginia. BMC Public Health 20:137CrossRef
8.
Zurück zum Zitat Committee on Injury and Poison Prevention (2001) Fireworks-related injuries to children. Pediatrics 108(1):190–191CrossRef Committee on Injury and Poison Prevention (2001) Fireworks-related injuries to children. Pediatrics 108(1):190–191CrossRef
9.
Zurück zum Zitat Kunz SN, Zinka B, Peschel O, Fieseler S (2011) Accidental head explosion: an unusual blast wave injury as a result of self-made fireworks. Forensic Sci Int 210:e4–e6CrossRef Kunz SN, Zinka B, Peschel O, Fieseler S (2011) Accidental head explosion: an unusual blast wave injury as a result of self-made fireworks. Forensic Sci Int 210:e4–e6CrossRef
12.
Zurück zum Zitat Romolo FS, Aromatario M, Bottoni E, Cappelletti S, Fiore PA, Ciallella C (2014) Accidental death involving professional fireworks. Forensic Sci Int 234:e5–e9CrossRef Romolo FS, Aromatario M, Bottoni E, Cappelletti S, Fiore PA, Ciallella C (2014) Accidental death involving professional fireworks. Forensic Sci Int 234:e5–e9CrossRef
13.
Zurück zum Zitat Nizamoglu M, Freu Q, Tan A, Band H, Band B, Barnes D, El-Muttardi N, Dziewulski P (2018) The ten-year experience of firework injuries treated at a UK regional burns & plastic surgery unit. Ann Burns Fire Disasters 31(1):13–16PubMedPubMedCentral Nizamoglu M, Freu Q, Tan A, Band H, Band B, Barnes D, El-Muttardi N, Dziewulski P (2018) The ten-year experience of firework injuries treated at a UK regional burns & plastic surgery unit. Ann Burns Fire Disasters 31(1):13–16PubMedPubMedCentral
14.
Zurück zum Zitat Hlavaty L, Kasper W, Sung L (2019) Suicide by detonation of intraoral firecracker: case report and review of the literature. Am J Forensic Med Pathol 40(1):49–51CrossRef Hlavaty L, Kasper W, Sung L (2019) Suicide by detonation of intraoral firecracker: case report and review of the literature. Am J Forensic Med Pathol 40(1):49–51CrossRef
15.
Zurück zum Zitat Roca JB, de los Reyes VC, Racelis S, Deveraturda I, Sucaldito MN, Tayag E, O’Reilly M (2015) Fireworks-related injury surveillance in the Philippines: trends in 2010–2014. Western Pac Surveill Response J 6(4):1–6CrossRef Roca JB, de los Reyes VC, Racelis S, Deveraturda I, Sucaldito MN, Tayag E, O’Reilly M (2015) Fireworks-related injury surveillance in the Philippines: trends in 2010–2014. Western Pac Surveill Response J 6(4):1–6CrossRef
16.
Zurück zum Zitat Durak D, Fedakar R, Turkmen N, Eren B (2008) Blast injury: lessons learned from an autopsy. Hong Kong Med J 14:489–491PubMed Durak D, Fedakar R, Turkmen N, Eren B (2008) Blast injury: lessons learned from an autopsy. Hong Kong Med J 14:489–491PubMed
17.
Zurück zum Zitat Makhoba MA, du Toit-Prinsloo L (2017) Self-inflicted explosive death by intra-oral detonation of a firecracker: a case report. Forensic Sci Med Pathol 13:459–463CrossRef Makhoba MA, du Toit-Prinsloo L (2017) Self-inflicted explosive death by intra-oral detonation of a firecracker: a case report. Forensic Sci Med Pathol 13:459–463CrossRef
18.
Zurück zum Zitat Ladham S, Koehler SA, Woods P, Huston R, Dominick J, Fochtman FW, Wecht CH (2005) A case of a death by explosives: the keys to a proper investigation. J Clin Forensic Med 12:85–92CrossRef Ladham S, Koehler SA, Woods P, Huston R, Dominick J, Fochtman FW, Wecht CH (2005) A case of a death by explosives: the keys to a proper investigation. J Clin Forensic Med 12:85–92CrossRef
19.
Zurück zum Zitat Read DJ, Bradbury R, Yeboah E (2017) Firework-related injury in the top end: a 16-year review. ANZ J Surg 87(12):1030–1034CrossRef Read DJ, Bradbury R, Yeboah E (2017) Firework-related injury in the top end: a 16-year review. ANZ J Surg 87(12):1030–1034CrossRef
20.
Zurück zum Zitat Blanco-Pampín JM (2001) Suicidal deaths using fireworks. J Forensic Sci 46(2):402–405CrossRef Blanco-Pampín JM (2001) Suicidal deaths using fireworks. J Forensic Sci 46(2):402–405CrossRef
21.
Zurück zum Zitat Tsokos M, Turk EE, Madea B, Koops E, Longauer F, Szabo M, Huckenbeck W, Gabriel P, Barz J (2003) Pathologic features of suicidal deaths caused by explosives. Am J Forensic Med Pathol 24(1):55–63PubMed Tsokos M, Turk EE, Madea B, Koops E, Longauer F, Szabo M, Huckenbeck W, Gabriel P, Barz J (2003) Pathologic features of suicidal deaths caused by explosives. Am J Forensic Med Pathol 24(1):55–63PubMed
22.
Zurück zum Zitat Bozza Marrubini M, Ghezzi Laurenzi R, Uccelli P. Intossicazioni Acute – Meccanismi, Diagnosi e Terapia, 2a Ed. – OEMF Bozza Marrubini M, Ghezzi Laurenzi R, Uccelli P. Intossicazioni Acute – Meccanismi, Diagnosi e Terapia, 2a Ed. – OEMF
23.
Zurück zum Zitat Kroon FS, Van Heuvel TP, Van Der Waal I (2004) Identification of cadavers in the Netherlands. Ned Tijdschr Geneeskd 148(28):1384–1388PubMed Kroon FS, Van Heuvel TP, Van Der Waal I (2004) Identification of cadavers in the Netherlands. Ned Tijdschr Geneeskd 148(28):1384–1388PubMed
24.
Zurück zum Zitat Pinchi V, Bartolini V, Bertol E, Focardi M, Mari F, Ricci U, Vanin S, Norelli GA (2016) Multiple deaths caused by a fire in a factory: identification and investigative issues. JFOS 33(2):47–59 Pinchi V, Bartolini V, Bertol E, Focardi M, Mari F, Ricci U, Vanin S, Norelli GA (2016) Multiple deaths caused by a fire in a factory: identification and investigative issues. JFOS 33(2):47–59
26.
Zurück zum Zitat Ventura Spagnolo E, Romano G, Zuccarello P, Laudani A, Mondello C, Argo A, Zerbo S, Barbera N (2019) Toxicological investigations in a fatal and non-fatal accident due to hydrogen sulphide (H2S) poisoning. Forensic Sci Int 300:e4–e8CrossRef Ventura Spagnolo E, Romano G, Zuccarello P, Laudani A, Mondello C, Argo A, Zerbo S, Barbera N (2019) Toxicological investigations in a fatal and non-fatal accident due to hydrogen sulphide (H2S) poisoning. Forensic Sci Int 300:e4–e8CrossRef
Metadaten
Titel
Forensic investigative issues in a fireworks production factory explosion
verfasst von
Gennaro Baldino
Chiara Stassi
Cristina Mondello
Antonio Bottari
Stefano Vanin
Elvira Ventura Spagnolo
Publikationsdatum
12.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Legal Medicine / Ausgabe 4/2021
Print ISSN: 0937-9827
Elektronische ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-021-02564-5

Weitere Artikel der Ausgabe 4/2021

International Journal of Legal Medicine 4/2021 Zur Ausgabe

Neu im Fachgebiet Rechtsmedizin

Assistierter Suizid durch Infusion von Thiopental

Thiopental Originalie

Als Folge des Urteils des Bundesverfassungsgerichts zur Sterbehilfe im Jahr 2020 wurde in den Jahren 2021–2023 eine Reihe (n = 23) von assistierten Suiziden im Landesinstitut für gerichtliche und soziale Medizin Berlin mit jeweils identischen …

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …